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ABSTRACT 
The present paper describes results on investigations on fatigue crack growth (FCG) conducted by the use of 
an irreversible cohesive zone model.  In the first part, the effects of constraint on FCG are investigated.  
Increased constraint leads to a reduction in crack closure and to an increase in crack growth rates.  In the 
second part, the effect of size on FCG is investigated.  For small structural dimensions damage is distributed 
homogeneously along the ligament in front of the crack tip, while as for large specimens damage is 
concentrated at the crack tip. Failure of small specimens is initiation dominated, while failure of large 
specimens is dominated by crack growth.   
 

1 INTRODUCTION 
Multi-layer structures are part of integrated circuitry and micro-electromechanical systems [1-4], 
and are also found in biological systems [5,6]. As structural length scales and associated layer 
thickness values decrease, two issues affect the fatigue failure behavior: constraint and size. As the 
thickness of individual layers is decreased in the multi-layer structure, the monotonic and cyclic 
plastic zones present at a crack tip can interact with the surrounding elastic material, leading to 
distortion of the plastic zone ahead of the crack tip [7-12].  Also, as the structural size decreases, 
the stress distribution at the crack tip changes [13].  Then, fatigue crack growth (FCG) analysis 
methodologies based on the Paris equation loose their validity and the transferability of FCG data 
among specimens with the different levels of constraint and of varying size is lost. To provide for 
an understanding of the constraint and size effects, and to enable the design of multi-layer 
structures at small scales against fatigue failure, an irreversible cohesive zone model (CZM) [14] 
is applied.    
 

2 FORMULATION 
An irreversible CZM is used to characterize the material separation under cyclic loading. This 
model describes the processes of material separation under cyclic loading by a constitutive 
relationship between the cyclically varying tractions and displacement jumps across an interface. 
Under monotonic loading the relationship between normal traction and normal separation, nT  
and n∆ , is described by: 
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The CZ material parameters in (1) are the initial cohesive strength, max,0σ , and the cohesive 
length, 0δ , such that the cohesive energy under monotonic loading is 0 max,0 0eφ σ δ= .  The 
irreversible CZM accounts for the evolution of the cohesive properties during cycling by use of a 
cyclic damage variable cD . The constitutive relation for the CZM accounting for cD  is given by 
replacing the CZ tractions by the effective cohesive tractions. The initial cohesive strength, 

max,0σ , in (1) is substituted by the current cohesive strength, maxσ , defined as 

                                   ( )max max,0 1 cDσ σ= −                                                                    (2) 
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To obtain the current state of damage, an evolution equation for damage is provided: 
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with H designating the Heaviside function. The CZ material parameters characterizing the fatigue 
behavior are the CZ endurance limit, fσ , and, δΣ , the accumulated cohesive length. Unloading 

and reloading are assumed to occur with the stiffness of ,max ,max/n nT ∆  such that during 
unloading/reloading the normal tractions are given by: 

                  ( ),max ,max ,max ,max/n n n n n nT T T= + ∆ ∆ − ∆                                                       (4) 

where ,maxnT  is the normal traction corresponding to ,maxn∆ , the maximum value of normal 
separation. 

The irreversible CZM was implemented for the commercial finite element code ABAQUS by 
use of the UEL subroutine feature. The damage variable was defined on averaged variables per 
element [14]. 
 

3 CONSTRAINT EFFECTS 
 
3.1 Model Definition 
A thin metal layer of height 2hl joins two elastic substrates with identical elastic properties. The 
crack is assumed to propagate along the center of the metal layer. The geometry of the problem 
addressed in this paper is shown in Fig. 1. In the modified boundary layer approach [15,16] 
loading is provided by describing boundary displacements according to prescribed cyclically 
varying mode I stress intensity factor ( ) (0.5 0.5cos 2 )IK t K tπ= ∆ − . Based on the mode I 
asymptotic crack tip solutions for linear elastic materials, the displacement fields are applied: 
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where r and θ  are polar coordinates of points on the remote outer boundary. We relate the range 
of the stress intensity factor, K∆ , to the range of the energy release rate, G∆ , by standard 
equations. Due to the nature of symmetry only half of the model is considered. The initial crack tip 
is located in a highly refined mesh region with length L . The length of one square element in this 
uniformly meshed region is 02.5l δ= . The computations were carried out for a model with overall 
size 10000r l=  and 110L l= . Four nodes plain strain elements are used. A single row of CZ 
elements was placed along the symmetry line of the model from the initial crack tip to the outer 
boundary.  The CZ elements possess four nodes with linear displacement jump interpolation.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic of a specimen where a ductile layer bonds two elastic substrates. 



These elements use nodes on the line of symmetry as two of their nodes. The second pair of nodes 
of the CZ elements is those in common with the adjacent solid elements. The typical finite mesh 
consists of 3892 solid elements and 123 CZ elements. The metal layer and the adjoining elastic 
substrates possess identical isotropic elastic properties, 100 GPas lE E= = and 0.34s lν ν= = . The 
elastic-plastic layer is characterized by a linear kinematic hardening model with yield 
strength / 400Y lEσ =  and a hardening modulus of / 20T lE E=  [17], respectively.  The values for 
the CZ parameters used in the computations are 0φ =20 J/m2 and max,0 4 Yσ σ= = /100lE  such that 

0δ =7.4 nm. Furthermore, we assume max,0/ 0.25fσ σ = and 0/ 4δ δΣ = .  
 
3.2 Results 
The first set of results described was obtained under constant amplitude loading with 0/G φ∆ =0.25 
and a load ratio R=0.  Figure 2(a) depicts the predicted increase in steady state FCG rate over that 
predicted for a model without constraint ( 0/lh δ →∞ ),  

0 0 00 / 0 / 0 /{[ ( / ) / ] [ ( / ) / ] }/[ ( / ) / ]
l l lh h hd a dN d a dN d a dNδ δ δδ δ δ→∞ →∞∆ − ∆ ∆ , in dependence of the 

height of elastic-plastic layer. For the material parameters and the loading considered, a metal 
layer of height 0/ 120lh δ > is needed such that constraint effects vanish and the predicted FCG 
rate equals that of a model with elastic-plastic material properties everywhere.  As the height of 
the metal layer is decreased, the FCG rate then increases.  The maximum increase in FCG rate 
over that for the model with 0/lh δ →∞ is found to be 0.2.  This value is reached for 0/ 10lh δ = .  
Beyond this value of layer height a further decrease in 0/lh δ has virtually no effect on the FCG 
rate. FCG rates are known to be connected to crack closure effects.  Figure 2(b) depicts the 
predicted crack opening profiles, 0/nu δ∆ , obtained at the minimum load in the fatigue cycle for 
the model with metal layer height 0/ 10lh δ = and the model with two ductile substrates, 

0/lh δ → ∞ . Data are presented for a growing fatigue crack at the end of the 29th load cycle. The 
corresponding normalized crack extension, 0/a δ∆ , is equal to 82.5 for the case 0/ 10lh δ = and 
62.5 for the case 0/lh δ → ∞ , respectively.  The result demonstrates the influence of constraint on 
the crack closure.  For 0/lh δ → ∞  pronounced crack closure is present.  In a situation of high 
mechanical constraint, however, crack closure is reduced. For 0/ 10lh δ =  the crack is predicted to 
remain open at minimum load. The absence of crack closure thus contributes to the increase in the 
crack growth rates for cases of small values of hl as depicted in Fig. 2(a). 

The effects of constraint on FCG under variable amplitude loading were investigated.  FCG 
simulations under consideration of a single overload were carried out. Initially, a constant 
amplitude load, 0/ 0.15G φ∆ = , was applied. In cycle N=25 an overload with magnitude 

0/ 0.45G φ∆ =  was applied. Subsequently, loading is continued with the original constant 
amplitude. The results of predicted normalized crack extension, 0/a δ∆ , vs. the cycle number, N 
are plotted in Fig. 3. In the absence of constraint, 0/lh δ → ∞ , the overload leads to the well 
known crack retardation effect. On the other hand, in the absence of plastic deformation, 

0/ 0lh δ = , the overload causes an instantaneous crack advance and temporarily increased crack 
growth rates. For intermediate values of the height of the ductile layer, 20 60lh< < , the crack 
growth behavior is found to be a combination of the two limiting cases 0/lh δ → ∞ and 

0/ 0lh δ → .  The overload results in a sequence of crack acceleration-deceleration-acceleration 
with the final behavior depending on the metal layer height. 
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Figure 2:  (a) FCG rates for various values of 0/lh δ compared to that for 0/lh δ → ∞ , 

0 0 00 / 0 / 0 /{[ ( / ) / ] [ ( / ) / ] }/[ ( / ) / ]
l l lh h hd a dN d a dN d a dNδ δ δδ δ δ→∞ →∞∆ − ∆ ∆ , vs. the height of the 

ductile layer. (b) Crack opening profiles for (1) 0/lh δ → ∞  and (2) 0/ 10lh δ = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Normalized fatigue crack extension curves for two elastic substrates with a ductile 
interlayer of different sizes, 0/lh δ , under variable amplitude loading, 0R = . 

 
4 SIZE EFFECT 

 
4.1 Model Definition 
In the second part of the paper, the effect of specimen size on the fatigue failure behavior is 
investigated. The notched strip model of Fig. 4 is considered. An infinite strip of height 2hs with a 
semi-infinite crack along the centerline of the strip is loaded by applying a cyclic uniform vertical 
displacement ( )v t on the upper and lower edges. 
 
 
 
 
 
 

Figure 4: Schematic of a notched strip model under uniform external load. 
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The cyclically varying energy release rate is given by ( ) 2 ( )sG t h W t∞= , where ( )W t∞  is the strain 
energy density at 1x = ∞  given by 11 12 220, ( ) ( ) / se e e t v t h= = = . Applying the stress-strain 
relations for elasticity 
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                                              (6) 

and for plane strain, 3 4κ ν= − , we obtain 
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For the cyclic loading we consider ( ) (0.5 0.5cos 2 )v t v tπ= ∆ − . A refined mesh is placed near the 
crack tip. The length of one square element in this uniformly meshed region is 05l δ= . The height 
of the highly refined mesh region is 020δ . In the finite element model symmetry conditions are 
employed. Four node plain strain elements are used, and 498 CZ elements are placed along the 
symmetry axis from the initial crack tip to the right edge. The elastic strip is described by Young 
modulus, 100E = GPa, and Poisson’s ratio, 0.34ν = . For the CZ elements, the cohesive zone 
properties 0 10φ = J/m2, max,0 1000σ = MPa, max,0/ 0.25fσ σ = and 0/ 4δ δΣ =  are used.  

 
 

 
 

 

 
 
 
 
 
 
 
 
 
Figure 5: Predicted fatigue behaviors of a notched strip with the different normalized strip heights, 

0/sh δ . (a) Normalized fatigue crack extension curves. (b) Distribution of fatigue damage. 
 

4.2 Results 
To investigate the size effects on fatigue failure behavior models with strip heights of 0/sh δ =20, 
240 and 750 were investigated under constant amplitude loading condition with 0/G φ∆ =0.2 and 
R=0. Figure 5(a) shows the predicted normalized fatigue crack extensions for the three values of 
strip height.  It can be seen that the fatigue failure behavior significantly depends on ratio 0/sh δ . 
In the specimen with the smallest height, 0/sh δ =20, fatigue failure is predicted to be initiation 
controlled.  Figure 5(b) depicts the damage distribution along the ligament at time t=15.5.  For 

0/sh δ =20 damage occurs essentially through a process of uniform cyclic debonding along the 
ligament in front of the initial crack tip.  At t=15.5 damage has not yet reached Dc=1 and the crack 

(a) (b) 



has not extended.  On the other hand, for the specimen with the largest height, 0/sh δ =750, the 
fatigue failure behavior displays a behavior characterized by crack growth initiation and 
subsequent growth.  The behavior of the specimen with intermediate height, 0/sh δ =240 initially 
follows that of 0/sh δ =750, however, the crack growth rate is larger than for 0/sh δ =750 and an 
abrupt transition to a uniform debonding occurs later.  For the largest specimen, 0/sh δ =750, a 
damage distribution typical of a cracked structure is present.  Damage has reaches a distinct 
maximum at the current crack tip, Dc=1.  For locations further away from the crack tip, damage 
has not yet accumulated.  For the intermediate size specimen Dc=1 at the current crack tip. Here, 
however, damage has also accumulated even far from the crack tip.  The present finding on the 
size effect in damage distribution is in agreement with results of recent investigations on the size 
effects of strength [13].  There, it was shown that in small specimens a constant value of stresses is 
present in front of the crack tip while for larger specimens a crack tip type field dominates.  
 

5 CONCLUSION 
The present paper describes results on simulations of fatigue failure conducted by use of an 
irreversible cohesive zone model.  Constraint effects in multilayer structures are demonstrated to 
alter fatigue crack growth rates through changes in the crack closure behavior.  The cohesive zone 
model approach is useful in this context as the effects of constraint are a direct outcome of the 
model and no a-priori specification of constraint factors are required.   

It is demonstrated that specimen size can alter the characteristics of the fatigue failure 
behavior.  When the sample size is sufficiently small, the stress distribution is constrained by the 
specimen boundary. The crack type stress distribution found in large specimens cannot develop, 
the stress concentration disappears and the damage distribution in the specimen becomes uniform.  
The cohesive zone model approach is also useful here since it captures both the S-N type behavior 
of the small specimens as well as the Paris type behavior found at large structural sizes. 
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