
 
IDENTIFICATION OF SHEAR WALL FAILURE MODE  

 
V. ČERVENKA 1, D. NOVÁK 2, D. LEHKÝ 2 and R. PUKL 1 

1 Červenka Consulting, Prague, Czech Republic 
2 Institute of Structural Mechanics, Faculty of Civil Engineering, BUT, Brno, Czech Republic 

 
ABSTRACT 

The paper is focused on identification of failure mode in a shear wall using advanced computational models 
and experiments. A problem arising from application of nonlinear fracture mechanics is discussed: a proper 
choice of material parameters in a computational model. The solution of such identification problem is 
presented. The approach is based on coupling of the stochastic nonlinear fracture mechanics analysis and the 
artificial neural network. 
 

1   INTRODUCTION 
A realistic modeling of structures made of quasi-brittle materials, such as concrete, is made 
possible due to advances in computational methods and nonlinear fracture mechanics. Computer 
code ATENA (Červenka [1], [2]) represents an efficient engineering tool for this purpose. It 
employs a set of advanced material models based on fracture mechanics, plasticity and damage. 
The models used in such analysis should be objective and thus should capture a sufficiently wide 
range of practical cases for a unique set of basic material parameters. This objectivity is tested 
through validation studies, where simulations done by computer program are compared with 
experiments. For such validations, we must first determine the basic material parameters, which 
can be used as input data for a simulation. However, in many practical cases some parameters 
needed for our theoretical models based on test data are lacking. In other cases we seek an inverse 
analysis of material parameters from complex experiments. In all such situations we are facing the 
problem of identification of model parameters. A most simple way of parameter identification, 
well known to all researchers, is the “trial-and-error” procedure, sometimes called “what-if-study”. 
However, this method is useful only in case when one parameter is most important and fails in 
general case of a multi-parameter model.  This paper presents a rational method of model 
parameter identification. 
     The numerical analysis, such as the one with ATENA, can be considered as a virtual testing 
tool of concrete structures. The model needs a set of material parameters as input and provides a 
load-deflection curve as a response. The objective is to find such a set of material parameters, 
which gives the best agreement between the simulated and experimental load-deflection curves. 
The proposed identification strategy is based on a coupling of the stochastic nonlinear fracture 
mechanics analysis and the artificial neural network.  
     Identification parameters play the role of basic random variables with the scatter reflecting the 
physical range of possible values. The efficient Monte Carlo type simulation method Latin 
Hypercube Sampling (LHS) is used. The statistical simulation provides a set of response data, 
which can be considered as the results of virtual experiments. Generated basic random variables 
and consequently calculated load-deflection curves are used for training of a suitable type of 
neural network. Once the neural network is trained it can simulate the structural behavior, and can 
be utilized in an inverse way. For a given experimental load-deflection curve it can provide the 
best possible set of material model parameters. 
     The implementation of the proposed identification method was made by integrating several 
software tools: Nonlinear analysis software ATENA (Červenka [1], [2]), probabilistic software 
package FREET (Novák et al. [3]), reliability shell SARA (Pukl et al. [4], Bergmeister et al. [5]) 



and neural network software DLNNET recently developed (Lehký [6]). The method is illustrated 
on the example of a shear wall tested by Maier and Thürliman [7], for which promising good 
results have been achieved and indicate that efficient techniques have been combined at all three 
basic levels: deterministic nonlinear modeling, probabilistic stratified simulation and neural 
network approximation. 
 

2   SHEAR WALL FAILURE MODE: EXPERIMENT AND MODELING 
The shear wall shown in Figure 1 was tested by Maier and Thürliman [7] as a part of an research 
project on structural systems of high rise buildings. The square panel was orthogonally reinforced 
and provided with stiffening flanges. Loading by the vertical force was applied first representing a 
dead load. Then a horizontal force was applied and increased to failure. Behavior during the 
experiment reported extensive diagonal cracking prior to failure followed by explosive crushing of 
concrete under maximum load. Experimental failure pattern is shown in Figure 1(b). 

    
 
      (a) Geometry, material data.         (b) Experimental failure     (c) Failure simulated by ATENA 

 
Figure 1:  Shear wall tested by Maier and its ATENA simulation. 

 
The analysis was done by ATENA using plane-stress isoparametric finite elements with the 
composite reinforced concrete material. This material consists of two phases, concrete and 
smeared  reinforcement.  Concrete constitutive  law is  based on  damage-based  concept,  in which 
 

     
 
                         (a) Stress-strain law.                                 (b) Failure function based on Kupfer. 

 
Figure 2: Concrete model SBETA. 



the stress-strain law, Figure 2(a), covers the whole range of behavior including the post-peak 
softening in tension as well as in compression. The peak stresses in compression and tension are 
defined by the strength envelope according to Kupfer, see Figure 2(b).  This relation is used for 
stress response in two orthogonal material axes within the concept of otrhotropic damage model. 
Fixed crack model is adopted. The strain-localization due to softening is controlled by the crack 
band, which is related to the element size. Strain localizes into a displacement, which represents a 
failure discontinuity in tension, or compression. Within the crack band model these displacements 
can be calculated as 
 ,c t t d d dw L w Lε ε= =  (1) 
where in tension wc is the crack width, εt is a tensile strain (or in case strain decomposition a 
fracture strain) within the crack band Lt. Similarly, wd is the compression slip of the crush zone, εd 
is compressive strain (or in case strain decomposition a plastic strain), Ld is the localization band in 
compression. The values of bands Lt (tension), Ld (compression), measured in perpendicular 
directions, are element projections oriented parallel and normal to the orientation as shown in 
Figure 3. The constitutive laws in softening ranges, denoted by numbers 2 and 4 in Figure 2(a), are 
formulated in terms of stress-displacement variables. In tension the exponential softening law 
according to Hordijk is accepted, which is fully defined by two parameters, the fracture energy Gf 
and tensile strength ft. In compression a linear approximation of Van Mier softening is used, with 
the parameter wd.  Details of these formulations can be found in the references Červenka [1], [2]. 

 
Figure 3:  Localization bands in tension and compression. 

 
A low mesh sensitivity of the model and its objectivity was published in the paper by Červenka 
et.al. [8]. The concrete constitutive model described above includes some additional features for 
cracked concrete (shear retention, etc.), which can be found in paper by Červenka [1].  
     The simulation of the load-displacement response of this shear wall revealed, that the quality of 
the failure mode can be well captured with the above model. As shown in Figure 1(c) the crack 
directions and locations of crushed concrete agree with experiment.  However, the maximum load 
and ductility of the model was significantly underestimated. This is likely due to the simplification 
of the constitutive model. The stress-strain curve, Figure 2(a), is based on uni-axial experiments of 
cylinders and is only slightly modified to account for the bi-axial stress action. There is no 
ductility in compression in such model. 
     However, in reality, there are some locations in the shear wall, in which a three-dimensional 
stress state can develop. Then a confinement effect can increase the strength and ductility of 
concrete. This is expected near the joints of panel with flanges and with the foundation slab. If we 
restrict our model to a plane stress formulation, there is no rational way for modeling confinement. 
However, in 2D model we have a simple tool for this by adjusting the compressive parameter wd. 
This was done by “trial-and-error” method and results are compared with experiment in Figure 4. 



0

200

400

600

800

1000

0 2 4 6 8 10 12 14

Horizontal displacement [mm]

H
or

iz
on

ta
l f

or
ce

 [k
N

]

S2 Experiment

ATENA wd 0,5

ATENA wd1

 
Figure 4:  Comparison of simulations with experiment (without identification). 

 
A more rational method for determination of parameters is proposed in the following part. 
 

3   IDENTIFICATION OF MATERIAL MODEL PARAMETERS 
The new identification technique is based on combination of statistical simulation and training of 
neural network (Lehký & Novák [9]). Several software tools had to be combined in order to make 
the identification possible. The whole procedure can be itemized as follows (software relevant to 
individual steps is referenced): 
1. Computational model hast to be first developed using the appropriate FEM software which 

enables modeling of both pre-peak and post-peak behavior. Initial calculation uses a set of 
initial material model parameters. Software: ATENA (Červenka & Pukl [10]). 

2. Parameters of material model to be identified are considered as random variables described by 
a probability distribution, rectangular distribution is a “natural choice” as lower and upper 
limits represent the bounded range of physical existence. But other distributions can be also 
used, eg. Gaussian (in spite of the fact that it is not bounded). These parameters are simulated 
randomly based on Monte Carlo type simulation, small-sample simulation LHS is 
recommended. Statistical correlation between some parameters can be taken into account. 
Software: FREET (Novák et al. [3]). 

3. A multiple calculation of 
deterministic computational 
model using random realizations 
of material model parameters is 
performed resulting in “a bundle” 
of load-deflection curves (usually 
overlapping experimental curve). 
Software: SARA (Pukl et al. [4], 
Bergmeister et al. [5]). 

4. Random load-deflection curves 
serve as basis for training of an 
appropriate neural network. Such 
training can be called a stochastic 
training due to the stochastic 

Figure 5: Identification software communication 
scheme.



origin of load-deflection curves. After training the neural network is ready to answer the 
opposite task: To select the material model parameters which can capture the experimental 
load-deflection curve as close as possible. Software: DLNNET (Lehký [6]). 

5. Final calculation using identified material model parameters should verify how well 
parameters were identified (ATENA). 

The complexity of program communication and necessary interfaces are shown in Figure 5.  
     All 10 shear wall parameters of material models (both concrete and steel reinforcement) were 
identified here. Mean values of parameters used for stochastic simulation and consequent 
identification are as follows: for concrete (SBETA model) – modulus of elasticity Ec = 30 GPa, 
compressive strength fc = 35 MPa, tensile strength ft = 2.5 MPa, fracture energy GF = 75 N/m, 
compressive strain in the uniaxial compressive test εc = 0.0025, critical compressive displacement 
wd = 0.003 m; for steel (bilinear law) – yield strain x1 = 0.0027, yield stress fx1 = 574 MPa, ultimate 
strain x2 = 0.015 and ultimate stress fx2 = 764 MPa.  
     For stochastic training, randomness was introduced using coefficient of variation 0.10 for Ec, ft 
and fc, 0.2 for GF and εc, 0.3 for wd and 0.1 for all steel parameters. Rectangular probability 
distribution for all random variables is used. 20 simulations of LHS resulted in load-deflection 
curves presented in Figure 6. This input-output information serves for training of selected neural 
network: network with 24 inputs (24 points on load-deflection curve for every simulation is 
utilized for training), two hidden layer consisting of 12 and 10 neurons with nonlinear transfer 
functions and one output layer of 10 neurons with linear transfer function. Trained neural network 
provided the material model parameters: Ec = 33 GPa, fc = 35.3 MPa, ft = 2.47 MPa, GF = 77.85 
N/m, εc = 0.0026, wd = 0.0031 m, x1 = 0.0028, fx1 = 570.7 MPa, x2 = 0.0147 and fx2 = 768.8 MPa.  
     Final calculation using ATENA resulted in a very good agreement with experimental load-
deflection curve, Figure 7. 
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Figure 6: Random load-deflection curve realizations – 20 simulations of LHS. 

 
4   CONCLUSION 

A method for rational identification of material parameters from structural experiments is 
proposed. It combines numerical tools for nonlinear analysis, stochastic processes and neural 
networks. The method allows an efficient inverse analysis of material parameters based on 
experimental load-displacement response. It gives better much results then the heuristic “trial-and-



error” approach. Such well-identified parameters based on an experiment can be then used for 
simulation of a real structure. 
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Figure 7: Load deflection curves – experiment and simulation using identified parameters. 
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