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ABSTRACT

Reliability analysis of ceramic components under stationary or transient loading is generally performed on the
basis of a Finite Element stress analysis from which the failure probability according to the multi-axial
Weakest Link theory is calculated with the help of a suitable post-processing routine. We use the STAU post-
processing routine and the general purpose Finite Element code ABAQUS. Due to scatter in the material
parameters, the resulting failure probability is also prone to statistical uncertainties. We present a method of
assessing this scatter using so-called resampling simulation methods. We obtain confidence intervals for the
failure probability. In a toy example using a four-point bend specimen, the effect of pooling (i.e. grouping of
results from different experiments by suitable scaling procedures) on numerical result and scatter of failure
probability is demonstrated. Here, pooling is done using results of inert strength measurements at various
temperatures and scaling to room temperature values. While the confidence interval of the failure probability
for the pooled data set gets smaller as expected from the increased sample size, its upper bound remains
stable which is a surprising result. A more realistic example deals with a ceramic component in a model
clutch under thermo-mechanical frictional loading. It is investigated, if the results of the toy example can be
reproduced in this more complicated case. As a first step, the local risk of rupture is calculated which leads to
the identification of the most critical regions of the component. As a second step, resampling confidence
intervals for the failure probability are determined. As resampling data base, we use inert strength values at
different temperatures as well as material data for sub-critical crack propagation.

1 INTRODUCTION
It is common practice to use the multi-axial Weibull theory [1]-[4] and its extensions [5] to calcu-
late the failure probabilities of ceramic components. Codes are currently available which allow a
probabilistic design under constant [6] or general time-dependent loading [7]. Temperature-de-
pendent material properties can also be taken into account [7]. Due to the scatter in fracture be-
haviour and sub-critical crack propagation of ceramic materials, calculated failure probabilities are
also prone to statistical uncertainties. Because of the complex and nonlinear relation between ma-
terial parameters and failure probability that is usually obtained using numerical integration of a
Finite Element stress field, standard methods of establishing confidence intervals are not available
because no sampling distribution for the failure probability P, is available. Also material data are
sometimes difficult and expensive to obtain, especially if temperature-dependent data are required
or in the case of time-consuming lifetime measurements [8]. It is then desirable to have ways of
using data from different experiments for a common purpose. This so-called pooling procedure is a
way of reducing statistical scatter because of an increase in the sample size. However, care has to
be take that pooling does not lead to inhomogeneous samples. As an example, we will show how
inert strength data obtained at various temperatures can be used to reduce scatter in the failure
probability estimation at a selected temperature level. In the following section two, a short review
of the relations used for failure probability calculation based on the multiaxial Weakest Link ap-
proach will be given. Section three contains the basic framework for uncertainty assessment of
material parameters and failure probability, namely confidence intervals based on bootstrap re-



sampling. In section four, a toy example will first be given which demonstrates the basic approach
of pooling and uncertainty assessment. A second example which is based on numerical analysis of
the stress and temperature distribution of a ceramic plate in a clutch test rig shows the range of
scatter in a more realistic case and provides a validation of the approach. Validation is obtained
both with respect to failure probability levels and with respect to local risk of rupture calculations
which are both obtained by the STAU post-processing routine [7] for the general purpose Finite
Element code ABAQUS.

2. FAILURE PROBABILITY
The time-dependent failure probability P,#) for a ceramic component under transient loading that
fails due to the presence of volume flaws is given by the following equation [5]:

1 m
n—2 9
Pf(t)=1—exp _ 1 ji max L() +¥ dQdv | (1)
V() V4-7Z'Q TG[O,Z‘] oy}

with i i

Oy g O-eq(t') "
Y=—2[ L ar )

B 0 Oy

describing the contribution from sub-critical crack growth with crack growth parameters » and B
to P;. The parameters oy and m denote the Weibull parameters for the inert strength distribution,
0., is the equivalent stress for the fracture mechanics description of natural cracks, usually the
normal stress on the crack faces, and V) is a unit volume. The quantity ¥ defined in Eqn. (2) de-
scribes the contribution of sub-critical crack propagation on P. For ¥=0, the probability for
spontaneous fracture is obtained. Under transient loading, the maximum of the load is relevant for
fracture according to the braces in eqn (1). Integration has to be performed over the component
volume V" and over all possible orientations of cracks 2. Generalisation of Eqn. (1) for surface
flaws is obvious.

The material parameters m, 0, n, and B are prone to statistical scatter. Therefore, the numerical
value of P, has only limited evidence because scatter in material parameters transfers to scatter in
the failure probability P so that an interval estimate of Py is required.

3. CONFIDENCE INTERVALS
Interval estimates of P, are difficult to obtain by analytical methods because of the complex rela-
tion to material parameters given in Eqns. (1), (2), where the respective contributions from sub-
critical crack propagation (parameters » and B) and spontaneous fracture (parameters m and o) are
not independent, as can be seen from the fact that the respective terms in Eqns. (1), (2) cannot be
separated. Dependence of the various parameters makes it impossible to combine confidence in-
tervals for the material parameters and to obtain a resulting confidence interval for P. Moreover,
while appropriate confidence intervals exist for parameters m and oy [9], they are not available for
parameters n and B. Fortunately alternative approaches exist and we have chosen the bootstrap
resampling approach [10] which allows to obtain the empirical cumulative distribution function for
Py from random sampling results generated from the available inert strength and crack propagation
data base from which material data estimates were obtained [11]. A sketch of the bootstrap resam-



pling procedure is shown in Fig. 1. In our case, we use the original data points, obtain one set of
material parameters (m, 0y, n, and B) and one estimate of the failure probability, P. Then, using a

large number of copies of the original data set, the so-called bootstrap population, we draw a num-
ber of bootstrap samples by random sampling from the bootstrap population and obtain a bootstrap
replication of the parameter set (m, oy, n, and B) for each bootstrap sample. For each of the boot-

strap replications, we obtain a corresponding result for P, and finally an empirical probability
distribution which reflects the scatter of Prdue to the scatter in the input parameter set (m, oy, n,

and B). Selecting 5% and 95% quantiles from the P, distribution, we obtain a 90% confidence
interval for P;.
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Fig. 1: Bootstrap resampling scheme.

4. EXAMPLES
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Fig. 2:  Experimental data base [8, 11].
a) inert strength results o(7) b) dynamic bending results at room temperature

The data base for both of the following examples consists of five inert strength samples (sample
size N = 15) at different temperature levels as well as of four samples from dynamic bending tests
at various loading rates which are shown in Figs. 2a, b. In the first (toy) example, a four-point
bend specimen is considered under sustained loading and the failure probability after 500 h is
calculated. Load level and loading time was selected in a way that a moderately high value of P,
was obtained for the original data base. Purpose of this example was to investigate the influence of
sample size on the size and stability of the P, confidence intervals. For this purpose, the inert



strength data from different temperature levels were pooled using a pooling procedure based on a
Bayesian Neural Network and all results were transformed into one large (N=75) ambient tem-
perature sample as indicated in Fig 2a. The resulting empirical cumulative distribution function
(CDF) for the pooled and unpooled samples together with the corresponding 90% confidence
intervals are shown in Fig. 3, where the vertical lines correspond to the Py -values of the original
samples which would have been obtained as result of the analysis using only STAU with no re-
sampling. The results show that a considerable reduction in the broadness of the confidence inter-
vals can be obtained by pooling, which is not surprising because of the increase in the sample size.
What surprises, however, is the fact that results from pooled and unpooled samples deviate by a
factor of two. But the corresponding upper limits of the 90% confidence intervals are nearly iden-
tical thus giving nearly the same reliability in terms of 90% confidence limits by an increase of the
failure probability in terms of point estimates from the original samples.
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Fig. 3: Empirical CDF of failure probability P, for pooled and unpooled data.

In the second example, a dry friction test rig is considered where the fracture behaviour of a rotat-
ing ceramic disk (Friatec alumina F99,7; d=166mm, /=5mm) is analysed under contact frictional
loading of a metallic counterpart made of cast iron (GG25 in German designation) under constant
load Fy and constant angular velocity 2zf. The resulting heat flux dQ/d¢ leads to a large tempera-
ture gradient in the vicinity of the frictional surfaces and the resulting thermal stresses may lead to
disk fracture. Details of the experimental setup and loading conditions are described in [12]. At
constant angular speed, loading was applied during a ramp time ¢. = 3s and then kept constant for
t, = 100s before unloading in time #. was performed. A limit load was observed for (f'= 1000 rpm,
Fy=500N, t, = 100 s), above which macro-damaging occurred at the outer part of the ceramic
disk in the form of fine radial cracks close to the frictional area. With further increase of loading,
fragmentation occurs as shown in Fig. 4. For the analysis of the test results, a 2D axisymmetric
Finite Element model using ABAQUS 6.4 with about 14000 Elements was developed. Fig. 5
shows a view of the model along a symmetry plane with the ceramic disk (red) and the metallic
friction partner (blue) together with the load-bearing carriers. Thermal boundary conditions in-
clude heat radiation, convection and conduction at the free surfaces. Mechanical boundary condi-
tions were imposed at the carrier structures. A user subroutine for the friction modelling provides
the friction power of the contact surfaces and imposes a corresponding thermal load for each time
increment at every node. A coupled thermo-mechanical analysis leads to the resulting stresses. In
analogy to the experiment the loading history was in 4 steps: a linear ramp ¢, (step 1), a constant
load step 2 (#,); a linear decrease ramp ¢, (step 3); time before subsequent cycle (z,) (step 4). Fig. 6
shows the temperature distribution along the disk surface for the entire cycle of 4 steps; Fig. 7
shows the corresponding distribution of the tangential stress (033). R=0 corresponds to the disk
centre, R=250 to the disk radius of 83 mm. The tangential stress is dominant and attains its peak



value at the end of the constant load step 2 with 033, = 180 MPa, whereas radial (07} ;. = 40
MPa) and axial (03,4 = 3 MPa) stresses are considerably smaller.
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Fig. 4: Macro-damaging of alumina ceramics Fig. 5: Section through the finite element
after frictional load: /= 1000 rpm, model along the symmetry axis
Fy=750N, t,=3s,1,=100s.

The stress analysis is used for a reliability analysis using the post-processor STAU. A failure prob-
ability of P,= 0.010 is obtained for spontaneous failure after step 2. If sub-critical crack growth is
taken into account, P,= 0.030. Fig. 8 contains these results as vertical bars together with the results
of bootstrap resampling as plot of the empirical CDF of log;((P)). Taking the CDF quantiles at 5
and 95%, respectively, we obtain 90% confidence intervals for the failure probability for sponta-
neous fracture (red curve) as [0.0001, 0.11] and for delayed fracture (green curve) as [0.0004,
0.35]. Thus we expect a reasonably large fraction of the specimens to fail in agreement with ex-
perimental results. A plot of the local risk of rupture (i.e. the probability density of fracture origin
location) in Fig. 9 shows that the most critical region is the outer part of the disk, where according
to the fracture appearance shown in Fig. 4 fracture probably initiates.
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Fig. 6: Temperature distribution for f= 1000 Fig. 7:  Tangential stress (033) for f= 1000
rpm, Fy=500 N, ¢t,=3s,£,=100s rpm, Fy=500 N, t,=3s,1,=100s
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Fig. 8: Empirical CDF for failure probability Fig. 9: Local risk of fracture (arbitrary units)

5. CONCLUSIONS

Confidence limits for the failure probability of ceramic components are obtained using the post-
processing routine STAU together with bootstrap resampling. For a toy example, pooling led to
stable upper bounds for P, for a realistic example with friction caused thermo-mechanical loading,
predicted confidence intervals and local risk of fracture predictions were in agreement with ex-
perimental findings.
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