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ABSTRACT 

Mesovolume deformation of aluminum-alumina metal-matrix composite is investigated within the plane-
strain formulation. Numerical solutions were performed in terms of Lagrangian variables using the finite-
difference method. Hierarchical simulation presumes the use of different models for describing a mechanical 
behaviour of the plastic metal matrix and brittle ceramic inclusions: elasto-plastic formulation with the strain 
hardening and a cracking model using a fracture criterion of Huber type, respectively. The criterion takes into 
account the difference in critical values for different local stress-strain states: tension and compression. 

It has been shown that the composite mesovolume exhibits complex mechanical behaviour controlled by 
both shear band formation in the matrix and cracking of inclusions. The computational results have been 
analysed in details and compared with those experimentally observed. 
 

1  INTRODUCTION 
According to the physical mesomechanics approach an occurrence of powerful stress 

concentrations of different physical nature near the interfaces in heterogeneous materials is one of 
the key factors determining a non-uniform deformation [1-3]. This effect is the most clearly 
pronounced in composite materials: metal matrix composites, materials with coatings, surface–
hardened materials, alloys with inclusions, etc. That is why fundamental investigations in this area 
could be further applied in computer-aided design of new constructional materials. 

 
2  MATHEMATICAL FORMULATION 

In this work mesoscale deformation of aluminum-alumina metal-matrix composite is 
investigated within the plane-strain formulation [4,5]. Numerical solutions were performed in 
terms of Lagrangian variables, using the finite-difference method. Hierarchical simulation 
presumes the use of different models for describing mechanical behaviour of the plastic metal 
matrix and brittle ceramic inclusions: elasto-plastic formulation with the strain hardening and a 
cracking model using a fracture criterion of Huber's type, respectively. The criterion takes into 
account the difference in critical values (strength in Table.1) for different local stress-strain states: 
tension and compression. 
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Here 21 C,C  are the constants that characterize yield strength of 32OAl  under tension and 
compression, respectively. The fracture criterion (1) means that the following conditions are 
associated with any local region of 32OAl : if bulk deformation kkε  takes on a positive value and 

eqσ  reaches its critical value of 1C  then pressure and all components of stress deviator tensor in 

this region tend to zero. In the case of 0kk <ε  and 2eq C≥σ  the pressure does not tend to zero. 
In so doing, if the fracture criterion fulfills, inclusions behave themselves as an uncompressed 
liquid. The material density maintains to be constant and corresponds to the density of 32OAl . 



Strain hardening function for the aluminum matrix is chosen to fit experimental data [7,8] and 
is described by the relation )048.0/exp(65170)( eqeq ε−−=εφ  [MPa], where in a general case 
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Table 1: Experimental mechanical properties of 32OAl  [6, 7]. 

Strength, MPa K, 
GPa 

G, 
GPa 

Density, 
3mkg,ρ  Tension

1C  
Compression 

2C  
318 147 3990 260 4000 

 
3  CALCULATION RESULTS 

It has been shown that the composite mesovolume exhibits complex mechanical behaviour 
controlled by both shear band formation in the matrix and cracking of inclusions (Fig.1). Fig. 1A 
shows map of the test cut-out. The image corresponds to the real structure of the mesovolumes, 
which were experimentally investigated in [7,8]. 

Boundary conditions on the right and left boundaries of the area under calculation determine 
grip displacement velocity, while on the top and bottom surfaces they correspond to the free 
surface conditions (Figure 1A): 
BC1: Ux = –U = constant; BC3: Ux = U; BC2: σijnj = 0; BC4: Uy = 0. 

The integral stress-strain diagram of the mesovolume under study is presented in fig. 1B. The 
stress was calculated as an average value of equivalent stress over the mesovolume: 
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Deformation represents relative mesovolume elongation towards X direction. 
00 LLLStrain −= , 0L  is the initial length in X direction, L is the current length. 

Fig.1C shows equivalent stress pattern. Initially the local fracture area is formed in the vicinity 
of the most powerful stress concentrator at the “aluminum-alumina” interface (solid arrow in 
Fig.1C). This gives rise to significant increasing in strain intensity in the neighboring regions. A 
new stress concentrator nucleates in the 32OAl  inclusion and crack propagates transversely to the 
loading direction. As the crack reaches an opposite boundary of the inclusion it stops and then 
begins to propagate along the interface, starting from the place of crack origination (dashed arrow 
in Fig.1C). This process is accompanied by stress relaxation throughout the mesovolume that 
results in descending portion in the stress-strain curve (fig. 1B). 

To sum up the computational results obtained under different types of external loading (tension 
and compression) the following conclusions remarks could be made. 
1. Due to strain incompatibility near the “aluminum-alumina” interfaces, there are formed local 
tension regions under macroscopic compression. And vise versa, under macroscopic tension in the 
same direction these local regions are under action of compression stresses. 
2. Local fracture areas firstly appear near the most powerful concentration of tension stresses, 
under action of which cracks propagate under both tension and compression, i.e. all the cracks are 
so-called “tensile cracks”. 



3. Cracking of inclusions is accompanied by the intensive plastic flow in the matrix under 
compression, whereas under tension cracks originate and begin to grow at the elastic stage of 
deformation. 
4. Cracks propagate perpendicular to the loading direction under tension and in parallel under 
compression. 
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Figure 1: Initial structure A, stress-strain curve B and equivalent stress pattern C for the 
mesovolume. 
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