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ABSTRACT 

The Weight Function (WF) for a subsurface crack parallel to the free surface of a two dimensional half-space 
is proposed and its general properties discussed. A matrix like formulation of the WF is considered to 
account for the loss of symmetry when the crack approaches the boundary of the half-space, giving rise to 
coupling effects between mode I and II of fracture. In order to study a completely general loading condition, 
the WF was built up by a symmetric and an anti-symmetric component. The ‘multiple reference loading’ 
approach was used to derive the analytical expression of the WF. To this purpose a parametric Finite Element 
(FE) analysis of the subsurface crack was set up, and the Stress Intensity Factors (SIFs) for several 
independent loading conditions were determined. The analysis was carried out for different positions of the 
crack with respect to the half-space boundary, and the dependence of the WF on this parameter was studied. 
An estimate of the accuracy is proposed and a practical application is finally presented in which the SIFs 
induced by a point like load travelling on the surface is evaluated. 
 

1 INTRODUCTION 
Several mechanisms of  failure in mechanical components, such as spalling in rolling contact 
fatigue [1-2] or fatigue failure from subsurface defects in ultra high-cycle fatigue [3-4], can be 
explained by considering the initiation and propagation of subsurface cracks. In the scientific 
literature many different approaches to predict crack nucleation and propagation can be found [1-
9]. If the distance of the crack from the body surface is sufficiently high compared to the crack 
length, the Griffith crack solution can be assumed as representative of the problem. This 
approximation turns to be questionable for subsurface cracks immediately below the component 
surface, as observed in many contact fatigue problems or for cracks that have been propagating 
over a length comparable with their distance from the surface. The FE have been used with 
success to evaluate the Stress Intensity Factors (SIF) under complex loading conditions [5] and 
also to predict the preferred crack propagation paths [7,8]. However, the FE method, since very 
powerful, is unfortunately a time-consuming technique particularly when many analyses have to 
be carried out to predict the crack propagation. Therefore, the development of more efficient 
approaches appears very useful. The WF method seems to be particularly efficient for this kind of 
problems. A WF has been recently proposed [9] to analyse a similar problem of a subsurface crack 
subjected to pure Mode II in rolling contact fatigue. However, on the authors knowledge, a 
completely general WF for subsurface cracks has been not yet presented in the literature. 

The present paper is aimed at determining a general formulation of the WF, by which  the 
Fracture Mechanics (FM) problem for a subsurface crack parallel to the external surface of a two-
dimensional half space can be computed for every loading condition, including the typical contact 
loading. To this purpose, a matrix like WF is proposed to account for the coupling effect arising in 
non symmetrical problems, such as the subsurface crack in a semi-infinite body, when the distance 
from the free surface is comparable with the crack length. The WF has been built up into a 
symmetrical and anti-symmetrical component, as usual for embedded cracks, thus allowing for a 
straightforward evaluation of the FM parameters under a completely general loading condition. 
The ‘direct assessment method’ based on multiple reference loading cases [11] is adopted to 



determine the diagonal and off-diagonal terms of the WF. To this purpose a FE analysis was 
carried out for different loading conditions and for different ratios between the crack length and its 
distance from the half-space free surface. The dependence of the WF coefficients on this 
geometrical parameter was studied. The accuracy of the SIFs calculated by the WF is evaluated by 
comparison with equivalent values determined by the FE analysis. A practical application is 
finally presented in which the SIFs induced by a point like load travelling on the surface including 
the friction force, are evaluated. 
 

2 MATHEMATICAL FORMULATION OF THE PROBLEM 
An embedded crack in a semi-plane having length 2a and distance b from the semi-plane surface 
is represented in fig.1. In order to rigorously define the FM parameters (in particular regarding the 
sign of KII of which a general definition is not usually adopted), a local Cartesian reference system 
is defined at each crack tip A and B. The two local reference systems share the y-axis while they 
have opposite x-axes (xA and xB repect.) each of them pointing toward the direction of crack 
propagation at the two tips. It is worth noting that the y-axis is the only axis of symmetry for the 
problem, its versus is univocally defined as it is chosen toward the nearest free surface. This is not 
the only possible choice, however, the adopted systems is useful for representing the axial 
symmetry of the problem, in which the quantities referred to the y-axis are the same for the two 
opposite parts of the crack. As discussed in [10], the relative displacements of the points C+ (D+) 
and C- (D-) located on the upper (y+) and lower (y-) crack edge respectively, define the sign of the 
SIFs when C (or D) approaches the tip A (or B). In particular: KI for the tip A (B) is positive if the 
y component of the displacement of point C+ (D+) is higher than the correspondent component of 
point C- (D-). Similarly, KII at the tip A (B) is positive if the xA (xB) displacement component of 
point C+ (D+) is higher than the corresponding component of the point C- (D-). 
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Fig.1 Subsurface crack parallel to the semiplane surface 
 

As follows from the original formulations of Bueckner [12] and Rice [13], by considering the 
energy associated to a crack in a linear elastic fracture mechanics, the WF derives from the elastic 
solution for one reference load system. With reference to Figure 1 in the case of an embedded 
crack, when the parameter a/b ->0  (the crack behaving as a Griffith crack in an infinite body), the 
SIF can be evaluated for any loading condition at tips A and B respectively by eqns. 1a and 1b.  

Since a general loading condition on the crack can be represented by an appropriate 
combination of symmetrical (S) and anti-symmetrical (A) stress distribution along the crack, the 
SIF can be obtained by superposing the two contribution with an appropriate sign, distinguishing 
between the right and the left crack tip: 
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M is either I or II in dependence on the mode of opening and S(x), the nominal stress produced 
along the crack line (either normal σ(x) or tangential τ(x)). Eqns. (1a) and (1b) hold for the local 
reference systems described in fig. 1. As a consequence two expressions of the WF have to be 
defined.  

For a  non symmetrical problem, one reference load system is not sufficient to define the WF 
as two SIF components are expected and the energy associated to the crack depends on both of 
them. As discussed in [10,11] a matrix like formulation of the WF is necessary. In the present case 
the geometrical parameter governing the problem is the ratio r=a/b and therefore the following 
general expression holds, where respectively for the tip A and the tip B, the anti-symmetrical 
contribution has to be summed to (+), or subtracted from (-) the symmetrical contribution: 
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The analytical expressions of the WF can be assumed, accounting for their general 
properties. In particular, as the r ratio approaches zero the crack can be assimilated to the Griffith 
crack in an infinite body for which the following uncoupled relationships hold: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) 0,,,,

12,,

12,,0

2

2

====







−⋅

⋅
==







−⋅

⋅
==→

rxhrxhrxhrxh

a
x

a
x

a
rxhrxh

a
x

a
rxhrxhr

A
I

A
II

S
I

S
II

A
II

A
I

S
II

S
I

τστσ

τσ

τσ

π

π

 (3) 

Therefore, for solving the integral equations (2) the following expressions were assumed for 
representing the general WF: 
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In order to fulfil the general asymptotic conditions, expressed by (3), the first coefficients 
corresponding to i=0 for the diagonal and off-diagonal terms of the WF are respectively: 
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The other coefficients corresponding to i>0 depend on the ratio r and a polynomial 
expression was adopted to represent this dependence: 
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3 EVALUATION OF THE WF 

To evaluate the eight components of the WF, several reference loading conditions have to be 
considered and for each of these, the SIF have to be determined at different r ratios. The SIFs 
were obtained by the FE method.  Since the number of terms in eqns. 4 was limited to three (n=2), 
being the first of these defined by the asymptotical conditions, the other two coefficients can be 
evaluated by carrying out the analysis for two independent loading conditions at different values 
of r. The loading cases of fig. 3 were considered, by applying appropriate stress distributions on 
the crack edges, thus allowing to determine respectively the symmetrical (loading cases of Fig. 3 
I) the anti-symmetrical (loading cases of fig. 3 II)  part of the WF as expressed by eqn.(2).  
 

xA 

y 
B A

xB O σ=1 

 

xA

y 
B A

xB Oσ=xB/a σ=xA/a

 

xA 

y
B A

xB Oτ=1 

 

xA 

y 
B A 

xB

Oτ=xB/a τ=xA/a 

 
I) 
 

xA 

y 
B A

xB O σ=−1 σ=1 

 

xA

y 
B A

xB 
Oσ=−xB/a σ=xA/a

 

xA

y
B A 

xB Oτ=−1 τ=1 

 

xA 

y 
B A 

xB

O τ=xB/a τ=−xA/a

 
II) 

Fig. 3: loading conditions used in the analysis. I) symmetrical uniform and linearly variable stress, 
II) anti-symmetrical loading uniform and linearly variable stress  

 
The results of  FE analysis carried out for r varying in the range 0.05<r<3.1 are reported in 

[14]. A reasonable compromise between the number of parameters in eqn. (6) and the accuracy of 
the WF was found by assuming m=3 in the series expansion. The corresponding α(Mµ ) i,j 
coefficients are reported in table I. 
 

Symmetrical components Anti-symmetrical components 
αS

Ισ
i,j j=1 2 3 αΑ

Ισ
i,j j=1 2 3 

i=1 1.236 -0.482 0.069 i=1 0.350 0.058 -0.021 
2 0.273 -0.050 0.005 2 0.118 0.090 -0.022 

αS
ΙΙσ

i,j j=1 2 3 αΑ
ΙΙσ

i,j j=1 2  
i=1 -0.296 0.101 -0.015 i=1 0.298 -0.181 0.026 
2 -0.140 -0.112 0.026 2 0.152 -0.211 0.036 

αs
Ιτ

i,j j=1 2 3 αΑ
Ιτ

i,j j=1 2  
i=1 -0.271 0.188 -0.032 i=1 -0.330 0.101 -0.011 
2 -0.183 -0.028 0.014 2 -0.099 0.104 -0.019 

αs
ΙΙτ

i,j j=1 2 3 αΑ
ΙΙτ

i,j j=1 2  
i=1 0.158 -0.051 0.008 i=1 0.179 -0.021 -0.0004 
2 0.152 -0.168 0.031 2 0.068 -0.013 -0.0037 

Table I: coefficients αΜµ
i,j for the WFs 



The SIFs calculated by using the WF for the eight reference cases were compared with those 
obtained by the FE analysis. The relative differences between the WF and the FE SIFs for both 
Modes showed a satisfactory agreement being generally within 2.0% in the whole considered 
range of r. This results demonstrate the adequacy of the function (eqn. 4-6) for interpolating the 
FE results and they indicate that, for the considered range of r, an increment of terms is not 
necessary as the relative differences are within the estimated range of accuracy for the FE SIF 
evaluation. 
 

3 AN APPLICATIVE EXAMPLE 
With reference to figure 4, a plane body carrying a subsurface crack and loaded by a force 
uniformly distributed through thickness having intensity P (force per unit thickness) is considered. 
The force P is applied inward the body normally to the surface at a variable distance L from the 
crack mouth thus reproducing the conditions of a travelling force. Inertia forces are neglected. 
Material is considered linear elastic and no contact between crack edges is taken into account. 
Under these assumptions material overlapping is permitted even though without physical meaning. 
The nominal stress produced by P in the uncracked body to be used in eqn. (2) can be deduced by 
the analytical Boussinesq solution [15] and subdivided in a symmetrical and an anti-symmetrical 
component. By solving the integral equation in eqn. (2) the KI and KII values for different relative 
load position (L/a) and different r were calculated, and the obtained trends are reported in figure 5, 
together with results of a FE analysis of the problem. In this case the following characteristic SIF 
was adopted as normalising factor: 
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results was found, being the relative difference almost within the 0.5%. 
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Fig. 4:travelling point like load on the surface 
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Fig. 5 SIF produced by a point like force travelling on the surface for two values of r 



3 CONCLUSIONS 
An analytical matrix like formulation of the WF for a general two-dimensional subsurface crack 
was proposed. A FE analysis was carried out to determine the SIF for several independent loading 
cases and the results were used for evaluating the numerical coefficients of the WF. The obtained 
WF reproduces the FE results with a good accuracy thus showing to be adequate for interpolating 
the FE results. An independent applicative example was considered to test the usefulness of the 
WF. The SIF produced by a point like force moving on the surface were calculated by WF and FE 
obtaining very small relative differences. 
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