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ABSTRACT
This paper focuses on an object-oriented development environment used to apply various multiaxial fatigue
criteria on mechanical structures under cyclic loading. Computing acts as a post-processing of data obtained
from usual Finite Element Analysis (FEA) of the structure, using an appropriate FEA software. The goal of
this programming workbench is to provide mechanicians with efficient tools to develop multiaxial  fatigue
criteria softwares based on the knowledge of stress/strain tensor fields values over the structure, as obtained
from FEA. This  project  is  developed  on PCs  running Linux,  using free  tools  such as  GNU development
tools, and Blitz++ numerical library.
Two  libraries  are  briefly  presented.  They  are  designed  to  provide  classes  corresponding  to  the  various
mechanical concepts and mathematical tools used to describe fatigue criteria:
– a specific “Fatigue Criteria” library supports various concepts involved in fatigue criteria definition;
– a “Finite Element” library is used to instantiate the required common objects such as meshes, elements,

nodes, ... Special attention is given to scalar and tensor fields (static or dynamic), which are of particular
interest for fatigue criteria formulation.

A specific  “Interface”  library  provides  classes  useful  to  read  data  from files  created  by FEA softwares.
Arrays manipulations (storage,  dynamic allocation,  numerical  computing ...) are provided by the  Blitz++
library. The main fatigue criterion implemented is the volumetric energy based high cycle multiaxial fatigue
criterion  proposed  by Banvillet,  Palin-luc  and  Lasserre  (Banvillet  [1]).  This  programming workbench  is
currently being used for a PhD thesis at LAMEFIP (Delahay [2]) to compute the LAMEFIP volume criterion
on  various  specimens.  Validation  results  are  presented  here  (with  elastic  behavior  hypothesis)  against
experimental  fatigue data from specimens in cast  iron EN-GJ8800-2. Other  multiaxial  fatigue criteria  are
also programmed.
  

1  INTRODUCTION
Object-oriented design has taken a growing part among recent scientific programming projects due to
the numerous advantages given by this  approach and associated tools.  This  project  presents an
object-oriented development environment intended to provide mechanicians with classes as close as
possible to concepts involved in the mechanical and mathematical description of multiaxial fatigue
criteria.  The design of  this  workbench conforms to   the “Unified Modeling Language” (UML)
standards (Booch [3]), its implementation relies on C++ language (Stroustrup [4]) using GNU C++
compiler  (http://www.gnu.org).  This  paper  is  focused  on  the  volume energy based  high  cycle
multiaxial fatigue criterion proposed by Banvillet et al. (Banvillet [1]).

2  THE VOLUME  MULTIAXIAL FATIGUE CRITERION
Details on the mechanical formulation of the volume energy based high cycle multiaxial fatigue
criterion can be found in [1]. The main concepts are briefly listed:
– The damage parameter at each point M of the structure is the strain work density given to each

elementary volume of material per loading period, Wg(M):

W g M =∑
i=1

3

∑
j=1

3 

∫T
ij M ,t  ̇ij M ,t  dt        (1)

where ̇ij M ,t  is the elastic strain rate tensor field after elastic shakedown; < a > = a if a > 0 and
< a > = 0 if  a  0.



– The critical nodes Ci are defined as nodes of the structure where Wg has a local maximum.
– A  threshold value of Wg  (called Wg* ) exists : it corresponds  to a stress limit σ* (lower than the

conventional endurance limit σD)  above which micro-damage initiation can occur.
– The volume V*(Ci) influencing fatigue crack initiation around each critical node Ci  is defined as

the set of points M around Ci where W gN ≥W g
* C i .

– The damaging part of the strain work density given per cycle around a critical point Ci is :

 g C i=
1

V *C i
∫∫∫V * C i

[W g M −W g C i]dv    (2)

– The multiaxial fatigue criterion is then expressed by  g C ig
DC i (3), where g

DC i is the
value of g C i at endurance limit. If (3) is false then a macro crack occurs at the node Ci .

3  CLASSES LIBRARIES

3.1 Fatigue Criteria Library

Figure 1: The Fatigue Library class diagram

This library povides classes corresponding to fatigue criteria and associated concepts. Abstract class
LAMEFIP_Vol_Criterion provides all the main methods used to compute the LAMEFIP volume
fatigue criterion:
– find_critical_node()finds all the critical nodes of the structure;
– for each critical node Ci , v_star()creates an object Influence_Volume and uses an iterative

algorithm to locate elements belonging to this volume: given the initial set of elements owning
Ci  ,  V*(Ci)  is  extended  to  adjacent  elements  having  at  least  one  node  N  verifying
W g N ≥W g

* C i , and so on ... Elements at the boundaries may have all their node critical (fully
critical element) or not (partially critical element).  

  Methods  to  compute  field  Wg  at  both  nodes  and  gauss  points  are  abstract  in
LAMEFIP_Vol_Criterion, so  implementation  is  only  given  in  derived  classes  (such  as



LAMEFIP_Wf_Criterion):  this gives an efficient way to implement various multiaxial volume
criteria  with  different  definitions  of  the  damage parameter  (Von Mises  equivalent  stress  as  in
Sonsino [5], or effective stress as in Adib [6]).
     Class  LAMEFIP_Wf_Criterion provides methods to compute Wg scalar field:

– compute_dot_strain_inst_tensor_field(): computes the strain rate tensor field ̇ij ;
– compute_WorkDensity_at_nodes()and compute_WorkDensity_at_gauss_p():

compute scalar field Wg for all nodes and gauss points.
     Data are written in output files using classes of the “Interface library”. Values written are scalar
fields values at nodes and at gauss points of the structure:
– Wg(M) and  Wg*(M),
– dT(M): the triaxility degree of loading,
– Rank(M): the influence volume flag  (zero if node M is not in an influence volume or else the

rank of the influence volume containing node M),
– Crit(M): the critical node flag (boolean value: 1 if node is critical, else 0).
– Crack(M): the crack flag (boolean  value: 1 if node is in a cracked volume, else 0).
     For each critical node the values of  some variables  are also printed on screen such as the safety
factor g C i/g

DC i (homogeneous with the ratio /D  used for stress based criteria).

3.2  Finite Element  Library

Figure 2: The Finite Element Library class diagram
     
This library gives the required common finite element classes. Time dependent  quantities such as



dynamic scalar or tensor fields are represented as an aggregation of these quantities at each time step.
Arrays, vectors and all numerical computations on arrays are provided by Blitz++ numerical library
(http://www.oonumeric.org/blitz) whose source code is available under the GPL license. Abstract
class  FEM_code_interface provides  the  conceptual  model  for  the  interaction  between FEA
software and FE library, in order to instantiate stress/strain tensor fields. This class  is specialized in
the  “Interface  library”  to  give  concrete  classes  implementing  the  interface  with  specific  FEA
software. 

3.3  Interface Library
Data computed with an appropriate FEA software (mainly stress/strain tensor field and structure
nodes) are imported using a set of classes from this “Interface library “ so that specific file formats
and input/ouput methods are encapsulated within these classes. In the present state, classes have been
implemented to  interface  this  workbench with  ZéBuLon (FEA software from the  « Centre des
Matériaux,  École de Mînes de Paris, FRANCE ») but any other FEA code could be interfaced as
soon as it stores computed stress/strain tensor field values in files of known format. Classes allow
reading binary data file created by ZéBuLon and writing fatigue criterion data into ZéBuLon files.
These files can be graphically post-processed by ZéBuLon to produce various graphs.

4  RESULTS
Results are computed (under elastic behaviour hypothesis) for specimen in SG cast iron EN-GJ8800-
2 loaded under combined plane bending and torsion. Figure 3 shows the specimen geometry.

Figure3: Specimen geometry

Figure 4: Specimen meshing

     Specimen meshing with ZéBuLon 3D quadratic elements gives 2184 elements and 27 123 degrees
of freedom (the 3 nodal displacements). Figure 5 shows boundary conditions used for  FEA :



Figure 5: Specimen Loading (plane bending + torsion).

     FEA of this specimen using  ZéBuLon  gives stress/strain tensors at every node and every gauss
point. Values of F bending and F torsion are tuned so that the normal stress amplitudea and the shear
stress amplitude a at surface nodes located at the lowest diameter torus section have approximately
the values of the experimental endurance limit (at 106 cycles or more). For such a loading with this
specimen  geometry  Banvillet  [1]  found  a=199 MPa  and a=147 Mpa  (using  the  stair-case
method with 15 specimens). 
    Once the FEA run, the LAMEFIP multiaxial volume fatigue criterion is applied to the specimen:
figures 6 and 7 show critical node and influence volume. Values of  the safety factor is about 1.0
which indicates that some damage occurs inside these volumes.

Figure 6: One of the two critical nodes located at      Figure 7: Projection of the influence volume on 
               the surface median torus                                       the specimen surface

     The volume width under the specimen surface is plotted on figure 8: scalar field Vrank is shown
for the nodes along the specimen radius in the cross section containing C1. We can deduce from this
plot that the width of the influence volume in which damage occurs is about 1.5 mm.

Figure 7: nodes in influence volume number 2 versus radius location 



5  CONCLUSION
In this paper we have illustrated the use of an object-oriented approach to design and implement an
environment development for multiaxial fatigue criteria computing (specially the LAMEFIP volume
fatigue criterion). Computed predictions are in good agreement with experimental results obtained
from specimens. We plan to improve the design and the implementation of this workbench to take
into  account more complex behaviors  (elastic-plastic  behavior)  to  apply the  LAMEFIP volume
fatigue criterion on  more complex specimen (notched specimens) and on real whole structures.
Other usual multiaxial fatigue criteria are also (Crossland, DangVan ...) implemented .
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5  APPENDIX : UML graphical notations

A B1..* 0..*

Association : structural relation between two classes

Class A is associated with zero or more occurrences of class B
class B is associated with one or more occurrences of class A

A B
1 0..*

Aggregation : one class  contains others

A B

Generalization :  one class is derived from another 

Class A contains 0 or more occurrences of class B
class B is contained in only class A

Class B ”is a” class A 
A generalizes B, class B is a specialization of class A
A is the mother class, B is the daughter class

A B

Dependence : one class depends on another 

Class A depends on class B

Association-class : the association between two classes A an B gives raise to another class C

A B

C

Composition : one class  is “made of ” others

A B1..* Class A is made of 1 or  more occurrences of class B


