
OBJECT-ORIENTED DEVELOPMENT ENVIRONMENT TO
COMPUTE MULTIAXIAL FATIGUE CRITERIA

Jean-Luc CHARLES, Thierry PALIN-LUC and Thomas DELAHAY
ENSAM, Laboratoire Matériaux Endommagement Fiabilité

et Ingéniérie des Procédes (LAMEFIP) EA 2727
33405 Talence, France

ABSTRACT
This paper focuses on an object-oriented development environment used to apply various multiaxial fatigue
criteria on mechanical structures under cyclic loading. Computing acts as a post-processing of data obtained
from usual Finite Element Analysis (FEA) of the structure, using an appropriate FEA software. The goal of
this programming workbench is to provide mechanicians with efficient tools to develop multiaxial fatigue
criteria softwares based on the knowledge of stress/strain tensor fields values over the structure, as obtained
from FEA. This project is developed on PCs running Linux, using free tools such as GNU development
tools, and Blitz++ numerical library.
Two libraries are briefly presented. They are designed to provide classes corresponding to the various
mechanical concepts and mathematical tools used to describe fatigue criteria:
– a specific “Fatigue Criteria” library supports various concepts involved in fatigue criteria definition;
– a “Finite Element” library is used to instantiate the required common objects such as meshes, elements,

nodes, ... Special attention is given to scalar and tensor fields (static or dynamic), which are of particular
interest for fatigue criteria formulation.

A specific “Interface” library provides classes useful to read data from files created by FEA softwares.
Arrays manipulations (storage, dynamic allocation, numerical computing ...) are provided by the Blitz++
library. The main fatigue criterion implemented is the volumetric energy based high cycle multiaxial fatigue
criterion proposed by Banvillet, Palin-luc and Lasserre (Banvillet [1]). This programming workbench is
currently being used for a PhD thesis at LAMEFIP (Delahay [2]) to compute the LAMEFIP volume criterion
on various specimens. Validation results are presented here (with elastic behavior hypothesis) against
experimental fatigue data from specimens in cast iron EN-GJ8800-2. Other multiaxial fatigue criteria are
also programmed.

1 INTRODUCTION
Object-oriented design has taken a growing part among recent scientific programming projects due to
the numerous advantages given by this approach and associated tools. This project presents an
object-oriented development environment intended to provide mechanicians with classes as close as
possible to concepts involved in the mechanical and mathematical description of multiaxial fatigue
criteria. The design of this workbench conforms to the “Unified Modeling Language” (UML)
standards (Booch [3]), its implementation relies on C++ language (Stroustrup [4]) using GNU C++
compiler (http://www.gnu.org). This paper is focused on the volume energy based high cycle
multiaxial fatigue criterion proposed by Banvillet et al. (Banvillet [1]).

2 THE VOLUME MULTIAXIAL FATIGUE CRITERION
Details on the mechanical formulation of the volume energy based high cycle multiaxial fatigue
criterion can be found in [1]. The main concepts are briefly listed:
– The damage parameter at each point M of the structure is the strain work density given to each

elementary volume of material per loading period, Wg(M):

W g M =∑
i=1

3

∑
j=1

3

∫T
ij M ,t  ̇ij M ,t  dt (1)

where ̇ij M ,t  is the elastic strain rate tensor field after elastic shakedown; < a > = a if a > 0 and
< a > = 0 if a  0.

– The critical nodes Ci are defined as nodes of the structure where Wg has a local maximum.
– A threshold value of Wg (called Wg*) exists : it corresponds to a stress limit σ* (lower than the

conventional endurance limit σD) above which micro-damage initiation can occur.
– The volume V*(Ci) influencing fatigue crack initiation around each critical node Ci is defined as

the set of points M around Ci where W gN ≥W g
* C i .

– The damaging part of the strain work density given per cycle around a critical point Ci is :

 g C i=
1

V *C i
∫∫∫V * C i

[W g M −W g C i]dv (2)

– The multiaxial fatigue criterion is then expressed by g C ig
DC i (3), where g

DC i is the
value of g C i at endurance limit. If (3) is false then a macro crack occurs at the node Ci .

3 CLASSES LIBRARIES

3.1 Fatigue Criteria Library

Figure 1: The Fatigue Library class diagram

This library povides classes corresponding to fatigue criteria and associated concepts. Abstract class
LAMEFIP_Vol_Criterion provides all the main methods used to compute the LAMEFIP volume
fatigue criterion:
– find_critical_node()finds all the critical nodes of the structure;
– for each critical node Ci , v_star()creates an object Influence_Volume and uses an iterative

algorithm to locate elements belonging to this volume: given the initial set of elements owning
Ci , V*(Ci) is extended to adjacent elements having at least one node N verifying
W g N ≥W g

* C i , and so on ... Elements at the boundaries may have all their node critical (fully
critical element) or not (partially critical element).

 Methods to compute field Wg at both nodes and gauss points are abstract in
LAMEFIP_Vol_Criterion, so implementation is only given in derived classes (such as

LAMEFIP_Wf_Criterion): this gives an efficient way to implement various multiaxial volume
criteria with different definitions of the damage parameter (Von Mises equivalent stress as in
Sonsino [5], or effective stress as in Adib [6]).
 Class LAMEFIP_Wf_Criterion provides methods to compute Wg scalar field:

– compute_dot_strain_inst_tensor_field(): computes the strain rate tensor field ̇ij ;
– compute_WorkDensity_at_nodes()and compute_WorkDensity_at_gauss_p():

compute scalar field Wg for all nodes and gauss points.
 Data are written in output files using classes of the “Interface library”. Values written are scalar
fields values at nodes and at gauss points of the structure:
– Wg(M) and Wg*(M),
– dT(M): the triaxility degree of loading,
– Rank(M): the influence volume flag (zero if node M is not in an influence volume or else the

rank of the influence volume containing node M),
– Crit(M): the critical node flag (boolean value: 1 if node is critical, else 0).
– Crack(M): the crack flag (boolean value: 1 if node is in a cracked volume, else 0).
 For each critical node the values of some variables are also printed on screen such as the safety
factor g C i/g

DC i (homogeneous with the ratio /D used for stress based criteria).

3.2 Finite Element Library

Figure 2: The Finite Element Library class diagram

This library gives the required common finite element classes. Time dependent quantities such as

dynamic scalar or tensor fields are represented as an aggregation of these quantities at each time step.
Arrays, vectors and all numerical computations on arrays are provided by Blitz++ numerical library
(http://www.oonumeric.org/blitz) whose source code is available under the GPL license. Abstract
class FEM_code_interface provides the conceptual model for the interaction between FEA
software and FE library, in order to instantiate stress/strain tensor fields. This class is specialized in
the “Interface library” to give concrete classes implementing the interface with specific FEA
software.

3.3 Interface Library
Data computed with an appropriate FEA software (mainly stress/strain tensor field and structure
nodes) are imported using a set of classes from this “Interface library “ so that specific file formats
and input/ouput methods are encapsulated within these classes. In the present state, classes have been
implemented to interface this workbench with ZéBuLon (FEA software from the « Centre des
Matériaux, École de Mînes de Paris, FRANCE ») but any other FEA code could be interfaced as
soon as it stores computed stress/strain tensor field values in files of known format. Classes allow
reading binary data file created by ZéBuLon and writing fatigue criterion data into ZéBuLon files.
These files can be graphically post-processed by ZéBuLon to produce various graphs.

4 RESULTS
Results are computed (under elastic behaviour hypothesis) for specimen in SG cast iron EN-GJ8800-
2 loaded under combined plane bending and torsion. Figure 3 shows the specimen geometry.

Figure3: Specimen geometry

Figure 4: Specimen meshing

 Specimen meshing with ZéBuLon 3D quadratic elements gives 2184 elements and 27 123 degrees
of freedom (the 3 nodal displacements). Figure 5 shows boundary conditions used for FEA :

Figure 5: Specimen Loading (plane bending + torsion).

 FEA of this specimen using ZéBuLon gives stress/strain tensors at every node and every gauss
point. Values of F bending and F torsion are tuned so that the normal stress amplitudea and the shear
stress amplitude a at surface nodes located at the lowest diameter torus section have approximately
the values of the experimental endurance limit (at 106 cycles or more). For such a loading with this
specimen geometry Banvillet [1] found a=199 MPa and a=147 Mpa (using the stair-case
method with 15 specimens).
 Once the FEA run, the LAMEFIP multiaxial volume fatigue criterion is applied to the specimen:
figures 6 and 7 show critical node and influence volume. Values of the safety factor is about 1.0
which indicates that some damage occurs inside these volumes.

Figure 6: One of the two critical nodes located at Figure 7: Projection of the influence volume on
 the surface median torus the specimen surface

 The volume width under the specimen surface is plotted on figure 8: scalar field Vrank is shown
for the nodes along the specimen radius in the cross section containing C1. We can deduce from this
plot that the width of the influence volume in which damage occurs is about 1.5 mm.

Figure 7: nodes in influence volume number 2 versus radius location

5 CONCLUSION
In this paper we have illustrated the use of an object-oriented approach to design and implement an
environment development for multiaxial fatigue criteria computing (specially the LAMEFIP volume
fatigue criterion). Computed predictions are in good agreement with experimental results obtained
from specimens. We plan to improve the design and the implementation of this workbench to take
into account more complex behaviors (elastic-plastic behavior) to apply the LAMEFIP volume
fatigue criterion on more complex specimen (notched specimens) and on real whole structures.
Other usual multiaxial fatigue criteria are also (Crossland, DangVan ...) implemented .

5 REFERENCES
[1] A. Banvillet, T. Palin-luc and S. Lasserre, “A volumetric energy based high cycle multiaxial
fatigue criterion”, Int. J. Fatigue, vol 25 (2003) 755-769.
[2] T. Delahay, “Développement d'une méthode probabiliste de calcul en fatigue multiaxiale prenant en
compte les gradients de contraintes”, to be published on july 2004, PhD Thesis, ENSAM CER de
Bordeaux, France.
[3] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling Language User Guide”, Addison-
Wesley, 1998
[4] B. Stroustrup, The C++ Programming Language, 2nd edition, Addison-Wesley,
[5] C.M. Sonsino, H. Kaufmann, V. Grubisic, “Transferability of material data for the example of a
randomly loaded forged truck stub axle”, SAE Tech. Paper Series 970708,1-22, Detroit Feb. 1977
[6] H. Adib, J. Gilbert, G. Pluvinage, “Fatigue life prediction for welded spots by volumetric
approach”, Int. J. Fatigue, 26, 81-94, 2004.

5 APPENDIX : UML graphical notations

A B1..* 0..*

Association : structural relation between two classes

Class A is associated with zero or more occurrences of class B
class B is associated with one or more occurrences of class A

A B
1 0..*

Aggregation : one class contains others

A B

Generalization : one class is derived from another

Class A contains 0 or more occurrences of class B
class B is contained in only class A

Class B ”is a” class A
A generalizes B, class B is a specialization of class A
A is the mother class, B is the daughter class

A B

Dependence : one class depends on another

Class A depends on class B

Association-class : the association between two classes A an B gives raise to another class C

A B

C

Composition : one class is “made of ” others

A B1..* Class A is made of 1 or more occurrences of class B

