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ABSTRACT

This paper reviews recent developments in the Weibull stress model for prediction of cleav-
age fracture in ferritic steels. The procedure to calibrate the Weibull stress parameters
builds upon the toughness scaling model between two crack configurations having different
constraint levels and eliminates the recently discovered non-uniqueness that arises in cal-
ibrations using only fracture toughness data obtained under small scale yielding (SSY) con-
ditions. The introduction of a non-zero threshold value for Weibull stress in the expression
for cumulative failure probability is consistent with the experimental observations that
there exists a minimum toughness value for cleavage fracture in ferritic steels, and brings
numerical predictions of the scatter in fracture toughness data into better agreement with
experiments. The calibrated model predicts accurately the toughness distributions for a va-
riety of crack configurations including surface crack specimens subject to different com-
binations of bending and tension.
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1. INTRODUCTION—THE WEIBULL STRESS MODEL FOR CLEAVAGE FRACTURE

In the ductile-to-brittle transition (DBT) region of ferritic steels, transgranular cleavage
initiated by slip-induced cracking of grain boundary carbides often triggers the brittle frac-
ture event which results in catastrophic failure of structural components. Due to the highly
localized character of the failure mechanism and microstructural inhomogeneity of the ma-
terial, the cleavage fracture toughness often exhibits a large amount of scatter and a strong
sensitivity to the local stress and deformation fields [1, 2]. This complicates greatly the in-
terpretation of fracture toughness data to define meaningful values for application in frac-
ture assessments of structural components, and has stimulated a rapidly increasing
amount of research on micromechanical descriptions of the cleavage fracture process. The
Weibull stress model originally proposed by the Beremin group [3] based on weakest link
statistics provides a framework to quantify the relationship between macro and microscale
driving forces for cleavage fracture. They introduced the scalar Weibull stress (0,,) as a pro-
babilistic fracture parameter, computed by integrating a weighted value of the maximum
principal (tensile) stress over the process zone of cleavage fracture (i.e., the crack front plas-
tic zone). The Beremin model adopts a two-parameter description for the cumulative failure
probability

Pf(aw) =1- exp[ - (OO—L:)m] , 1)
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Here parameters m and o, denote the Weibull modulus and the scale parameter of the Wei-
bull distribution. Moreover, m defines the shape of the probability density function for mi-
crocrack size [3]. In Eq. (2), V represents the volume of the cleavage fracture process zone,
V,, defines a reference volume to normalize the integral units and o, is the maximum princi-
pal stress acting on material points inside the fracture process zone.

The Weibull stress thus defines a local, crack front parameter to couple remote loading
with a micromechanical model that incorporates the microcracks in a weakest link philoso-
phy. Under increased remote loading described by </ (or K )), differences in evolution of the
Weibull stress, o, = 0,(J), reflect the potential strong variations in crack-front fields due
to the effects of constraint loss and volume sampling. The inherently 3D formulation for o,
defined by (2) readily accommodates variations in J (or K ) along the crack front in a
weighted sense.

The Weibull stress concept enables construction of a toughness scaling model between
crack configurations exhibiting different constraint levels. Based on equal probabilities of
fracture, the scaling model requires the attainment of the same Weibull stress value to trig-
ger cleavage in different specimens, even though the J values may differ widely [4, 5, 6]. The
quantitative relationships enable the simple transfer (or scaling) of critical J values from
one geometry and loading condition to another to accommodate constraint and volume sam-
pling differences.

2. CALIBRATION OF THE WEIBULL STRESS MODEL

The applicability of the Weibull stress model to predict failure probability and/or to scale
fracture toughness values between different crack configurations relies on the calibrated
values of Weibull parameters, m and o,. Initial efforts to calibrate Weibull parameters used
notched (round) bars tested at lower-shelf temperatures (e.g., [3]) and assumed identical
values apply for defect assessments in the DBT region. Anticipating that m and o, may very
well depend on temperature, stress-strain gradient and plastic strain levels present in
cracked components operating in the DBT region, many researchers (e.g., [7]) proposed to
calibrate m and o, using fracture toughness data measured at a temperature comparable
to the application.

Previous studies have shown that fracture toughness values in the DBT region follow
a Weibull distribution, P{J.)=1— expl[-(J./p)“], where f§ defines the toughness value at
63.2% failure probability and a quantifies the scatter. Reliable estimates of the Weibull
slope a require a large number of measured toughness values (J,) in the data set while as
few as 6-10 J-values suffice to establish the characteristic toughness value  with high con-
fidence levels [8]. The conventional calibration method employs an iterative procedure to
determine m and o, such that the micromechanics model (1) predicts the measured tough-
ness distribution. Because the calibrated values of m and 0, depend on the measured tough-
ness distribution (i.e., both a and f), the experimental data set must contain a large number
of J-values. However, most experimental data sets do not satisfy this requirement. Experi-
mental sets of J.-values often have limited number of specimens (6-10) and therefore, large
uncertainties must be expected in m and o, determined in this manner. Moreover, experi-
mental programs usually employ deep-notch SE(B) specimens or C(T) specimens which fail
under small scale yielding (SSY) conditions. Both theoretical studies and experimental re-
sults suggest that a =2 for SSY. Gao et al. [5] have shown that the conventional calibration
method leads to non-unique values of m and o, under SSY conditions, i.e., many (m, o,)
pairs can be found such that the microscopic model (1) predicts the same failure probability
as the macroscopic model.

Recognizing these problems of the conventional calibration method, we propose a new
approach to calibrate m and o, [5]. This approach requires testing of two sets of specimens
giving rise to different constraint levels at fracture (e.g., SE(B) specimens with different
a/W ratios). By using the toughness scaling model based on o, the calibration process seeks



the m-value which corrects the two sets of fracture toughness data to have the same statisti-
cal properties under SSY conditions, i.e., the two constraint-corrected SSY toughness dis-
tributions have the same f-value. A maximum likelihood estimate of g for the constraint-
corrected SSY toughness distribution uses the theoretical value for a (=2), and 6-10 J.-val-
ues in each set are sufficient to obtain g with high confidence. Once m is determined, o, is
just the computed Weibull stress value at J = 8 in the SSY configuration with the specified
reference thickness.

In contrast to the conventional calibration method which attempts to find the values for
m and o, by curve fitting the predicted Pf vs. J distribution to the experimental data, the
new procedure adopts a fracture mechanics basis rather than a purely numerical fitting pro-
cess. This approach has been successfully applied to calibrate m and o, for several ferritic
steels [5, 9, 10].

3. THE THRESHOLD ¢, FOR CLEAVAGE FRACTURE

The Weibull stress model defined by Eqs (1-2) represents a pure weakest link description
of the fracture event. This two-parameter model describes the unconditional cleavage prob-
ability that assumes no microcracks arrest (macroscopic cleavage fracture occurs once the
critical microcrack experiences propagation). However, the unconditional probability has
significant shortcomings to predict cleavage fracture [5, 11]. First, it implies that a very
small K; (stress intensity factor due to applied load) leads to a finite failure probability,
which is not true in reality. Cracks cannot propagate in polycrystalline metals unless suffi-
cient energy exists to break bonds, to drive the crack across grain boundaries and to perform
plastic work. Consequently, there must exist a minimum toughness value (K_; ) below
which cracks arrest. K . has an experimentally estimated value of 20 MPa/m for common
ferritic steels under SSY conditions, independent of the crack front length. The value of
K, =20 MPa,/m has been adopted by ASTM E-1921 [8]. Second, the unconditional proba-
bility often over-estimates the measured scatter of fracture toughness (see Anderson et al.
[11] and Gao et al. [5] for examples).

Some researchers (e.g., Bakker and Koers [12], Xia and Shih [13], and others) introduce
a threshold stress (0,;,) into computation of the Weibull stress to reflect the observed macro-
scopic threshold toughness. One such proposal for the integrand to compute the Weibull
stress has the form (0, — 0,,)"™. But rational calibration procedures for ¢,, remain an open
issue. Moreover, introduction of ¢,;, into the Weibull stress expression does not imply the
existence of K _; > 0. A finite value of 0,, (and thus a finite value of failure probability) exists
at a very small K-value even though o,, >0 is introduced in the Weibull stress formulation.

To introduce an explicit threshold toughness into the Weibull stress model, we propose
a modified form for Eq. (1) given by

O — O mn
_ _ _ w w-min
Ploy) =1 exp[ (—Gu =7, min) ] , (3)
where o, . represents the minimum o,-value at which macroscopic cleavage fracture be-

comes possible. Consistent with the definition of K _; , we define o,_, . asthe value of oy,
calculated at K=K . in the (plane strain) SSY model, where the SSY model has a thickness
equal to the configuration of interest for which (3) is applied. Therefore, calibration of
0, min 1S straightforward and does not require any additional experimental data. According
to this three-parameter Weibull stress model (3), the toughness scaling model between spec-
imens having different geometries and loading conditions should be constructed at identical
oy-values, where 6,,= 0, —0,,_, . . Gaoet al. [5] and Gao and Dodds [6] provide detailed dis-
cussions about the three-parameter Weibull stress model and the toughness scaling method

based on Weibull stress with o, _, . >0.



4. PREDICTION OF CLEAVAGE FRACTURE IN A PRESSURE VESSEL STEEL

This section describes an application of these recent developments in modeling cleavage
fracture to predict the behavior for various crack configurations of an A515-70 pressure ves-
sel steel, including surface crack specimens loaded by different combinations of tension and
bending. Joyce and Link [14] and Tregoning (see Gao et al. [9]) recently performed extensive
fracture tests on this material in the DBT region. The material has a Young’s modulus of
200 GPa, Poisson’s ratio of 0.3 and yield stress of 280 MPa at -7°C and 300 MPa at -28°C.
Twelve plane-sided 1T C(T) specimens (a/W=0.6) were tested at -28°C and twelve plane-
sided 1T SE(B) specimens (a/W=0.2, B X 2B cross-section) were tested at - 7°C. In addition,
seven bolt-loaded and seven pin-loaded surface crack specimens were tested at - 7°C. The
pin-loaded specimen experiences a higher bending moment whereas the bolt-loaded speci-
men experiences predominantly tensile loading. All specimens failed by cleavage without
prior macroscopic ductile tearing.

Fracture toughness data for the deep-notch C(T) specimens and the shallow-notch SE(B)
specimens are used to calibrate the Weibull stress parameters. Because the C(T) specimens
and the SE(B) specimens have different test temperatures, toughness values for the C(T)
specimens are needed at -7°C. Here, we employ the “master curve” approach of ASTM
E-1921 [8] to adjust the C(T) toughness values for the temperature change. The “master
curve” for ferritic steels makes possible the prediction of median fracture toughness (for 1T
thickness) at any temperature in the transition region, provided the reference temperature
(T, for the material has been determined from SSY fracture toughness data at a single tem-
perature. The calibration for m is as follows: 1) Assume an m-value and compute the o, vs.
K ; history for C(T) and SSY (plane strain) configurations respectively using the material
flow properties at -28°C. Scale the measured toughness values for C(T) specimens to the
SSY configuration. Determine 7', using the constraint corrected toughness values and esti-
mate K, (K ; at 63.2% failure probablhty) at -7°C (denote as KA) according to ASTM E-1921;
2) Compute the oy, vs. K history for SE(B) and SSY (plane straln) configurations respective-
ly at -7°C. Scale the measured toughness values for SE(B) specimens to the SSY configura-
tion. Estimate K, for the constraint corrected toughness distribution and denote it as KB,
3) Define an error function as R(m) = (KB KA) / KA If R(m) =0, repeat the above steps for
additional m-values. The calibrated Welbull modulus m=11.2, makes R(m)=0 for the
Ab515-70 steel tested at the current conditions. After m is calibrated, O, min and 0, can be
easily determined. At -28°C, the values of ,,__ ;. and o, corresponding to the thickness of
the C(T) specimen are 790 MPa and 1378 MPa. At -7°C, the values of 0,,__ . and o, corre-
sponding to the thickness of the SE(B) specimen are 741 MPa and 1435 MPa.

Figure 1 compares the predicted failure probabilities for the C(T) and SE(B) specimens
using the calibrated Weibull stress model (3) with the median rank probabilities for the
measured J,. values. The dashed lines indicate the 90% confidence limits for the estimates
of the experimental rank probabilities. To compute these confidence limits, we assume that
the (continuous) P,values from Eq. (3) provide the expected median rank probabilities for
an experimental data set containing the number of measured J.-values. The calibrated
Weibull stress model predicts accurately the shape of the toughness distribution and cap-
tures the strong constraint effect on fracture toughness.

Finally, we apply the calibrated three-parameter Weibull stress model to predict the cu-
mulative failure probability for cleavage fracture of the tested surface crack specimens. Be-
cause the crack front length of the surface crack specimen equals to 1.67 X the crack front
length of the SE(B) specimen, the values of 0,,_, . and o, for surface crack specimens are
slightly different from those for SE(B) specimens. Here, o,,_, . =776 MPa and 0, =1470
MPa. The model predictions capture the measured toughness distributions for both bolt-
loaded and pin-loaded specimens, see Fig. 2, where the J-values for plotting are computed
at the center-plane (the deepest point on the crack front). The pin-loaded specimen has a
greater bending load and thus exhibits a higher failure probability at the same J-level
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Fig. 1. Comparison of predicted cleavage probabilities (solid lines) with rank probabilities for

measured J.-values (symbols). The dashed lines represent the 90% confidence limits for
the median rank probabilities. (a) deep-notch C(T) specimens; (b) shallow-notch SE(B)
specimens.

compared to the bolt-loaded specimen. Fig. 2 shows two curves for the predicted failure
probabilities of the bolt-loaded specimens. In Eq. (2), the principal stress (o) value appear-
ing in the Weibull stress integral can be assigned the current value at the loading level (J)
or the maximum value experienced by the material point during the loading history. Of the
four crack configurations examined in this work, the choice of o, definition makes a differ-
ence only for the bolt-loaded surface crack specimen as shown. Consequently, the calibrated
values of m, 0, and 0,,__; do not depend on the choice of ¢, definition. Constraint loss in
the bolt-loaded configuration leads to a slight decrease in near-front stresses under large
scale yielding, and thus use of the maximum o, values raises the failure probability.
Stresses have smaller values under large scale yielding but the process zone volume for
cleavage continues to grow with crack front blunting which leads to monotonically increas-
ing failure probabilities. The prediction that includes the history effect provides a slightly
better agreement with the experimental data for this very low constraint configuration.
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Fig. 2. Comparison of predicted toughness distributions (solid lines) for both bolt-loaded and pin-

loaded SC(T) specimens with experimental data. The symbols represent rank probabili-
ties for the measured <J.-values and the dashed lines represent the 90% confidence limits
for the rank probabilities. (a) bolt-loaded specimens; (b) pin-loaded specimens.

5. CONCLUDING REMARKS

This work applies recent developments in the Weibull stress model to predict cleavage fracture in
an A515-70 pressure vessel steel. The procedure to calibrate the Weibull stress parameters builds



upon the toughness scaling model between two crack configurations having different constraint lev-
els and exhibits very strong sensitivity to m. It eliminates the recently discovered non-uniqueness
that arises in calibrations which use only deep-notch SE(B) or C(T) data. The calibrated Weibull mo-
dulus for the A515-70 steel at -7°C is m = 11.2. The introduction of a non-zero threshold value for
Weibull stress (0,,_, ;) in the expression for cumulative failure probability reflects an approximate
treatment of the conditional probability of propagation in the DBT region and is consistent with the
experimental observations that there exists a minimum toughness value for cleavage fracture in fer-
ritic steels. It brings numerical predictions of the scatter in fracture toughness data into better
agreement with experiments. Calibration of the threshold Weibull stress makes use of the generally
accepted, minimum toughness value for ferritic steels and requires no additional experimental ef-
fort. The calibrated three parameter Weibull stress model accurately predicts the toughness dis-
tributions for all specimen configurations and captures the strong constraint effect on cleavage frac-
ture due to differences in crack geometry and loading mode (bending vs. tension).
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