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ABSTRACT 
 
Stress singularities often occur in wedges and junctions. Pageau and his colleagues [1] used the Airy’s 

stress function to formulate the stress and displacement fields for the n-material wedges and junctions. In their 
analysis, it was found that “over specification” of two SIFs occurs while complex singularity appears. They 
proposed a standardized generalized stress intensity factor (GSIF) to characterize the stress field and avoid over 
specification. However, the proposed GSIF did not resolve over specification problem completely. Using 
complex variable technique, the over specified condition arisen from the traditional definition of complex SIF 
was disclosed in this paper.  

A new definition of complex SIF was also introduced to additionally consider the conjugate part of the 
singularity and resolve the unconformity between the stress expansion and the traditional definition. By using 
the new definition, the mixed characteristics of SIFs for the multi-material wedges and junctions can be clarified 
while complex singularity can be degenerated into real singularity. Furthermore, the energy release rate for 
interfacial crack was re-analyzed to include the mixed mode effect. From the polar plots of Kθθ and Krθ , the 
modes corresponding to the singularities can be distinguished for the bi-material junction problens, in which 
Chen and Nisitani [2] solved. Due to geometrical symmetry, the singularities were decoupled for the tensile and 
shear modes. It was concluded that the patterns of the new defined SIFs can be used to characterize the stress 
fields and loading modes and be also applied to general multi-material structures without geometrical 
symmetry.  
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INTRODUCTION 
 

Stress singularities are very commonly occurred in multi-material structures. Due to the infinite magnitude 
of stress near the tip of junction, the concept of stress intensity factor (SIF) based on the fracture mechanics is 



often used to characterize the singular stress fields. In general, three methods are mostly used to analyze the 
stress singularity. They are (i) Airy’s stress function proposed by Williams [3]; (ii) Mellin transform used by 
Bogy [4] and Dunders [5] as well as applied by Hein and Erdogan [6] on the analysis for various wedge angles; 
(iii) Kolosov-Muskhelishvili [7] stress function proposed by Theocaris [8]. It is well known that stress 
oscillation, which is caused by complex stress singularities, arises in some multi-material structures and annoys 
researchers very much.  

Only few reports have devoted to the expansion of stress field because of algebraic difficulties. There is no 
widely accepted SIF for the general stress singular field. Rice [9] discussed several possible definitions of SIF 
for interfacial cracks. He pointed out that tensile and shear effects near the crack tip are intrinsically inseparable 
into analogues of classical mode I and mode II conditions. This problem also exists in junction structures [8]. 
Yang and Munz [10] determined eigenfunctions for both real and complex singularities. Chen and Nisitani [2] 
showed that the mode I and mode II solutions are decoupled due to geometrical symmetry for real singularities 
in a particular case of bi-material junction. Pageau et al. [1] noticed that the definition of the generalized SIF 
(GSIF) defined by Chen and Nisitani [2] for bi-material junctions differs from that of Yang and Munz [10] for 
bi-material wedges. In the work of Pageau et al. [1], some traditional definitions were reviewed. They proposed 
a standardization scheme for the definition of SIF by the Airy’s stress function approach of Williams [3]. Two 
real constants MI and MII were introduced in terms of GSIF. They found that only normal stress and shear stress 
can be respectively used to define mode I and mode II SIFs, i.e. KI and KII, because of the behavior of the 
eigenfunctions at θ=0, and θ is the polar angle. Herein, over specification of two SIFs corresponding to MI and 
MII was depicted. Although their scheme defines the GSIF to avoid over specification, whether the definition 
can be adopted on failure assessment due to the over specified condition is questionable and furthermore the 
definition depends on normal or shear stress conditionally. Specifically speaking, the GSIF proposed by Pageau 
et al. [1] cannot resolve the over specification completely.  

In order to overcome the over specified condition and find a unified definition of GSIF, complex variable 
technique was applied to analyze the wedge and junction problems in this paper. A similar expression to that 
used by Pageau et al. [1] was derived. Obviously, the over specified condition is arisen from the traditional 
definition of the complex SIF. Hence, a new definition of SIF was proposed in this paper while conjugate 
singularity was taken account in the SIF expression. In the new definition, the mixed part of SIF was identified. 
The new definition of the SIF conforms to the stress field expansion; therefore, over specified condition no 
more occurs. The complex singularity can also be degenerated to the case of real singularity. Since the newly 
defined SIF overcomes the over specified condition and identifies the mixed part of modes, it can be properly 
used for failure assessments. On the other hand, the energy release rate for interfacial crack was re-analyzed to 
include the effect of mixed mode. It is found that the energy release rate can be composed by mode I, mode II 
and corresponding mixed parts. 
 
ANALYSIS OF THE OVER SPECIFIED CONDITION 
 
According to authors’ previous work [11], stresses are expressed as 
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where Q1 and Q2 are undetermined real constants, η is the real part of (λ-1), and ε is the so-called oscillation 
index and constant 2π is included in the expression. Eθθ, Fθθ, Erθ and Frθ are functions of θ. When ε becomes 
zero, the oscillation of trigonometric function disappears. It is seen that eqn (1), which is obtained through 
complex variables technique, is the same as that derived by Pageau et al. [1]. Based on this expression, the 
definition of SIF can be further discussed. 
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By following the definition of SIF for bi-material interfacial crack [12-14], the SIF is expressed as 
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 The over-specified problem can also be easily disclosed by expanding eqn (2). 
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 By comparing the expressions of KI and KII between eqns (1) and (3), it can be seen that the expressions of 
either KI or KII of the real part are different from those of the imaginary part. Therefore, if both the real and 
imaginary parts of eqns (3) are adopted to obtain the SIFs, they over specify the SIFs. In other words, KI  and KII 
in eqns (3) represent SIFs of mode I and mode II, respectively, only when ε equals zero. They no longer mean 
pure mode I and mode II when ε is not zero, i.e., mode mixing occurs. 
 
NEW DEFINITION OF STRESS INTENSITY FACTOR 
 
As discussed in [11], the new SIFs are shown as follows: 
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where 
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Note that the notation θ is additionally added into the subscript of SIFs and that KIθ, KIIθ, KIεθ and KIIεθ  are 
functions of θ  only. In the homogeneous case, both KI and KII are clearly defined along θ = 0o. In the general 
multi-material wedge and junction problems, however, it is not straightforward to define the SIFs. In other 
words, θ = 0o can be chosen arbitrarily. Furthermore, the SIFs defined in eqns (4) and (5) reflect the mixing 
characteristics inherent in the multi-material system. Alternatively speaking, fracture modes become rather 
complicated everywhere a simple loading is applied on a multi-material system.  
 
REPRESENTATIONS FOR THE SHEAR AND TENSILE MODES 
 
Since the mixed parts of GSIF for multi-material system are clarified, the role of mixed characteristics is 
examined for the widely used traditional criteria. Stress oscillation always causes a difficult situation in the 
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definition of SIF. From the previous sections, the newly defined SIF was proposed to be compatible with stress 
field and well applied on the case of stress oscillation.  
The singular stress comes from the exponent η . In mixed state of stress, oscillation index ε annoys the 
engineers very much. It seems not easy to find a strength index not including the characteristic length r. 
Oscillation index ε causes variation of stresses with varying frequencies. As r is near zero, the spatial frequency 
becomes higher. While the spatial frequency is high and “wave length” is smaller than material microstructure 
characteristic length, the amplitude of the “wave” is a proper expression for the SIF. Eqn (4) can therefore be 
rewritten as  
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The factor Kθθ and Krθ is a function of θ and is defined as 
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Kθθ becomes KIθ and Krθ becomes KIIθ when real singularity is used.  

On the other hand, energy release rate is often used to measure the fracture resistance of materials. 
Considering the case of a bi-material interfacial crack, energy release rate should be changed to include the 
conjugate part of the singularity. The traction, σyy+iσyx, and the displacement jumps, δy+iδx, across the crack face 
are expressed as follows: 
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'
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+= and E´=E for plane stress, E´=E/(1-ν2) for plane strain. E1 as E2 are Young’s moduli of 

materials 1 and 2, respectively.  
The second terms of eqn (8) are the conjugated parts of the first terms, which are the traditional 

expressions [9]. Then the energy release rate G is derived by following Hutchinson’s derivation [15]: 
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It is seen that the mixed parts appear in the energy release rate clearly. In a homogeneous crack, both KI and 
KIε contribute to mode I. 
 
NUMERICAL DEMONSTRATION 
 
Consider a model of bi-material junction. There exist two singularities, 0.623716 and 0.755233. By arbitrarily 
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applying loads, Kθθ and Krθ can be obtained for both singularities. Fig. 2 is the SIF distribution for λ=0.623716. 
It is found that Kθθ is not zero along line of symmetry, but Krθ

  is. Obviously, this singularity 0.623716 
corresponds to tensile mode. On the other hand, the SIF distribution for λ=0.755233 is shown in Fig. 3. Kθθ is 
zero along line of symmetry, but Krθ

  is not. This singularity 0.755233 corresponds to tensile mode.  Hence, it 
is possible to distinguish modes by SIF distribution rather than mathematical formulation as done in [2]. Similar 
cases are also found in multi-material structures. 
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Figure 1. Distributions of Kθθ and Krθ                                                 Figure 2. Distributions of Kθθ and Krθ  
          for an open wedge and λ=0.623716                for an open wedge and λ=0.755233 

 
 
DISCUSSIONS AND CONCLUSIONS 
 
 In this paper, a new definition of SIF was proposed by employing the complex variable method. The 
traditional expression of complex SIF is not complete due to the lack of inclusion of additional conjugate term 
and is over specified as pointed out in the paper by Pageau et al. [1]. An additional conjugate term was added 
and a new form of stress expression was derived in this paper. In the new form, the mixed parts of SIF were 
clarified. Consequently, the new form can be applied well on both real and complex singularities. Typically, the 
traditional energy release rate G was re-examined for the interface crack. And the mixing part KIε and KIIε 
appears in the expression of G. 

Here, the angular distrbution of Kθθ and Krθ can be used to represent the loading mode. They are actually 
two different aspects for modes. It is doubtful if Kθθ and Krθ are tensors as the stresses σθθ and σrθ. They are 
indeed not tensors, since they are defined asymtotically near the singular point, that is r=0, but not at it. That is, 
it characterizes the behavior near the singular point. 

It was shown that the loading modes could be examined from the patterns of the angular distribution of 
Kθθ and Krθ rather than from the geometry. The patterns of Kθθ and Krθ angular distribution are characteristic of 
stress fields for different geometries. The maximum Kθθ and Krθ can be determined from the patterns. Therefore, 
the pattern of the Kθθ distribution represents the characteristics of the loading modes more properly. It is useless 
to distingush the tensile and shear modes when the reference coordinates cannot be set definitely.  

Considering the spatial frequency of the stress oscillation, the new factors Kθθ and Krθ , which are functions 
of θ, are defined. And Kθθ and Krθ

  can be degenerated into KIθ and KIIθ when the singularity is real. The mode 
mixing can also be found clearly from the Kθθ and Krθ  angular distribution. Since the proper form of stress 
expression was obtained, the stress field can be derived and SIF can be extracted. It should be then noted that 
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the new form is more appropriately suitable for multi-material junction and wedge problems in which reference 
direction is not defined clearly. 
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