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ABSTRACT

Qualification of cleavage fracture toughnessis discussed on the basis of the statistical local fracture criterion
approach. The Weibull stress criterion is applied to the constraint loss field at the crack tip of the toughness
specimen. The constraint effect has been described with the Toughness Scaling Model (TSM) proposed by
Anderson and Dodds. New model in which the statistical nature of the cleavage fracture is explicitly taken into
account has been proposed. Analytical prediction indicates that the specimen size requirements in toughness to
obtain avalid value must be significantly depending on the value of strain hardening exponent and the Weibull
shape parameter of the cleavage fracture stress. The 2-dimensional and 3-dimensional FE analysis were per-
formed to confirm above analytical prediction. The 3-dimensional analysis also suggested that the thickness
effect on toughness was mainly caused by the statistical volume effect.

The values of the strain hardening exponent, n and the Weibull shape parameter, m for varioustypes of struc-
tural steels were experimentally investigated. The results coupled with the analytical prediction demonstrated
that the specimen size requirements for avalid toughness shall be prescribed as * a, b>100J/o,’ for the most
of commercial steels, where a and b are crack size and ligament size of the specimen, respectively.
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INTRODUCTION

Loss of constraint due to a shallow notch or large scale yielding decreases the stress level at the crack tip and
causes high toughness [1,2]. Dodds and Anderson [3] quantified the deviation in stress distribution caused by
the loss of constraint and developed the toughness scaling model (TSM). Based on their works size require-
ments to achieve sufficient constraint that is equivalent with the small scale yielding condition is proposed
approximately asin the ASTM E-1820-96:
B b,>MJ./o,,M =200 Q)

where B is the specimen thickness, b, is the ligament length of the specimen, J_isthe critical J-integral, and g,
is the effective yield strength of the material. The value of M, the constraint factor, was soon revised to be 50
according to 3-dimensional FE analysis[4]. Recently, the ASTM E-1820 (1999) was also revised to that M
should be 100 except for given particular materials of M=50. The Weibull stress criterion [5,6] is applied to the
toughness scaling model, and the effect of constraint lossis described as afunction of the stress contour simi-
larity ratio and the Weibull shape parameter, m of the cleavage fracture stress [7]. Analytical model predicts
that the effect of constraint on the toughness strongly depends on the Weibull shape parameter of the material.
The materials that have higher value of m, that implies small scatter in the cleavage fracture stress, are able to
obtain a valid toughness in smaller specimens. In the present work, two- and three-dimensiona FE analysis
coupled with the Weibull stress criterion were performed to confirm the above theoretical prediction. Then, the
value of the Weibull shape parameter in the commercial steels were investigated and the validity of the ASTM
prescription on the size requirements has been discussed.

WEIBULL STRESS SCALING MODEL

Anderson and Dodds [1] quantified stress contour similarity at the crack tip between the large scale yielding
(LSY) condition and the small scale yielding (SSY) condition. They successfully expressed the LSY stress
field in terms of the constraint loss factor, pand the SSY stressfield. The variable, ¢is defined as the similarity
ratio in the area of a specified stress contour at the crack tip. The apparent J-integral for the LSY condition, J ¢,
is converted to the J, as,

‘]cSSY = ‘Jc LSY¢1/2 (2)
The Weibull stress g is defined as[9],
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where V is the volume subjected to the maximum principal stress 0;, and V, is a unit volume of the material.
The exponent mis the Weibull shape parameter for the critical Weibull stress at cleavage fracture. When a
stress singurarity can be assumed as alevel of exponent 3, the principal stress, o, ahead of the crack tip can be
described as

(0,/0,)s, =9(0)(Jssy / rao)B (4)
The HRR stress field corresponds to = 1/(n+1), where n = the strain hardening exponent, and g(6) is a geo-
metrical function of the specimen. The stressfield for the LSY can be written in analogy to the SSY as
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Substituting Eq.(5) to Eq.(3), the following relation can be derived [7],
JCSSY = Jc LSYQUUBm (6)
Thisformulation indicates that the TSM is the one particular case of the Weibull stress criterion dependent on

the combinations of nand m. The values of gare numerically given asafunction of n by Anderson and Dodds
[3] and the fitting equation of @for a bend specimen with notch depth, a/W=0.5, as follows:

JLSY — 1 D‘]LSY%[/

=~ =1+0
ly @7 th, 0,
® =0.8425n>%?

y =1.126 +0.01925n —8.333 x107°n’

Assuming that the SSY stressfield can be described with the HRR solution, the exponent Sis replaced with 1/
(n+1). From Eq.(6) and Eq.(7), theratio of J ., to J., can be evaluated as:
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Figure 1 shows the results of Eq.(8), denoted as the WSSM, in comparison with the TSM. The specimen size
requirement parameter, M (=b,0,/J, ) issolved for J . /I, = 1.2 asafunction of n. The value of M indicates
the limiting value to obtain the toughness within a deviation less than 20% from the SSY condition, and corre-
spondsto the constraint factor, M in Eq.(1). Those results suggest that the SSY toughness of the materials with

large value of mand smaller value of n can be obtained in smaller specimens.

2-D AND 3-D FEM ANALYSIS

In order to confirm above analytical prediction and to clarify the three dimensional size effect, 2- and 3-
dimensional FE analysis were performed using the WARP 3D [8]. Finite element models for toughness speci-
mensare shownin Fig.2. 2D-SSY analysis was performed using the semi-circular model with the boundary of
the SSY singularity [4]. The Ramberg-Osgood type constitutive equation with yield strength, o, = E/500, was

adopted. The value of J-integral was calculated from both the path integral (J,,) and the load-displacement
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Fig.2 Finite element models for fracture toughness specimens.

curve (J, ;). In the case of the 2-D plane strain analysis, both Jintegral values are consistent with others. The

Weibull stress was caculated in the zone of 0,>0, =20, and g, =30,

Figure 3 shows an example of results on relation between the Weibull stress, g, and J-integral (J,,). Theratio

of J , to J, can be estimated with an assumption of the Weibull stress criterion according to the procedure

shown in the figure. When the value of Bm=2, the TSM model must be coincide with the present WSSM model

with the assumption of the HRR singularity. Figure 4 shows a comparison of the both model for the case of
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pm=2interms of relations between J . /), and b g, /J . Bold lines indicate the results of Anderson and
Dodds[1] and fine lines are the plane strain FEM results of the WSSM model. The results shown in Fig.4
support numerically the validity of the WSSM model.

Thevaueof Jintegra inthe 3-D FE analysisis varied with its definition. Path integral valuein agiven plane
distributes along with the crack front in direction of the thickness. Average value through the thickness is
different from J, especialy in thelarge scale yielding. In the present work, J, .is adopted for the discussion
because J, , is more significant in practical toughnesstesting. The estimated values of the Weibull stress of the
specimens with different thickness but the same in-plane size are shown in Fig.5. Thicker specimen has larger
value of the Weibull stressinvolving both the constraint effect and the statistical volume effect. Figure 6 shows
an exampleontheratio of J ., to J.., asafunction of J . . Bold lineindicates the results on the plane strain 2-
D FE analysis. Thevalue of J, inthe 2-D analysisis modified to the equivalent value with the same thickness
of the 3-D specimens. Itimpliesthat the effect of volumeis eliminated in the value of theratio. Although in the
case of m=10, the constraint effect can be observed, theratio of J ., to J, isamost the same in the specimens
of B=11mm and 22mm in the case of m=20 and 30. This result implies that the constraint effect due to the
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increase of the thicknessisrelatively small in the materials that have larger value of the Weibull shape param-
eter, m.

EXPERIMENTAL ANALYSISON THE WEIBULL SHAPE PARAMETER, m

Theoretical and numerical analysis suggest the significant role of the Weibull shape parameter, min qualifica-
tion of the cleavage fracture toughness. For several materials the value of mwas investigated experimentally
using notched round bar specimens. However, the datais insufficient to discuss general tendency in practical
steels. The Beremin’s model gives a description of the cleavage fracture toughness as [5]:
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The Weibull fracture stress and its shape parameter, m are assumed to be constant irrespective of the tempera-
ture. Equation (9) indicates that temperature dependence of the fracture toughness is mainly caused by the
variation of theyield strength of the materials. From the experimental data on the toughness of various type of
steels [9], the value of m was evaluated according to Eq. (9) and iteration procedure shown in Fig. 7. The
evaluated values of m are shown in Fig. 8 as afunction of theyield strength at room temperature together with
the experimental values of m obtained in notched round bar specimens. The values of mvary in the range of 10
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to 40. The lower toughness material generally has a lower value of m. The values of the strain hardening
exponent, n were simultaneously investigated. Based on these values of m and n, corresponding constraint
factor, M that givestheratio of J ., to J, of 1.2 can be obtained from Eq. (8) asisshown in Fig.9. The results
shown in Fig.9 indicate that the constraint factor, M in Eq. (1) for the most of the practical steelsareintherange
of 50 to 100 except for low toughness materials and the revision of the ASTM E1820 in 1999 is reasonable.

CONCLUSIONS

The Weibull stress criterion was applied to the toughness scaling model proposed by Anderson and Dodds [1].
The proposed new model suggests that the size requirements for specimen to obtain the sufficient constraint in
toughness testing are strongly depending on the value of the Welbull shape parameter, m and the strain harden-
ing exponent, n of the materials. Thisanalytical prediction was confirmed by the FE analysis coupled with the
Weibull stress criterion. Three dimensional FE analysis simultaneously indicates that the thickness effect in
toughnessis mainly caused by the statistical volume effect especially for the materials with the high value of m.
The values of the shape parameter, m were estimated from the transition curve of the cleavage fracture tough-
ness. The constraint factor, M to obtain the J, is presumed as in the range of 50 to 100 for the most of
commercia steelsand it is consistent with the revision in the ASTM E 1820.
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