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ABSTRACT 
 

A mathematical form that represents the average plastic J-integral over the crack front of a semi-
elliptical surface crack under uniform tension has been recently developed by the author. The form provides an 
estimate for the average plastic J-Integral at any stage of loading for wide array of surface crack geometries and 
material's hardening exponent.  The purpose of this study is to introduce a numerical representation of the 
variation of the local plastic J-integral along the crack front. This is developed by studying the relationship 
between the average plastic J-integral and the local plastic J-integral at any point of the crack front. This 
relationship depends on the parametric angle, crack depth, crack width, and probably also geometry thickness to 
width ratio and the material hardening exponent. A wide array of crack geometries are used in this study. The 
crack depth to geometry thickness ratio varied from a shallow crack with a ratio of 0.1 to a deep crack with a 
ratio of 0.82.  The crack depth to crack width ratio ranged from a narrow crack with a ratio of 2.0 to a wide 
crack with a ratio of 0.5.  The finite element method has been used to develop the different models. About 35 
different cases are included in the study to encompass the wide variation in the studied parameters.  
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INTRODUCTION 
 

The energy rate interpretation of J-integral, which was introduced by Rice [1] for two-dimensionsl 
geometries, can be applied for both: elastic J-integral, Jel, and plastic J-integral, Jpl.  Hence, Jpl for two-
dimensional geometries can be written as [1,2]: 
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where Upl is the plastic potential energy, B is specimen width, a is crack length and vpl is the plastic load line 
displacement. It was also domenstrated that the relation between the load per unit thickness, P, and vpl in two-
dimensional geometries can be represented by a separable form [2,3,4] as: 
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where G(a) and H(vpl) are the geometry and deformation functions. The energy rate interpretation of Jpl, as 
represented by Eq. (1), and the load separation as represented by Eq. (2) led to the development of the single 
specimen Jpl expression for these geometries which can be written as: 
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where b is the uncracked ligament, Apl is the area under the P versus vpl record and ηpl is a factor that depends 
on the geometry and crack length [5,6,7]. 
 

The energy rate interpretation form given in Eq. (1) can be also written as: 
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This expression indicates that the infinitesmal difference in the plastic potential energy between two identical 
specimens with an arbitrary infinitesmal crack length difference of ∆a at the same vpl is equal to the crack 
driving force, [BJpl], times the crack length difference.  In three-dimensional geometries, such as surface cracks, 
this expression can be written as [8]: 
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where S represents the crack front of the surface crack. Jpl  varies along the crack front while ∆a is arbitrary 
according to equation (4) and can be assigned a position function or a specific effective value along the crack 
front [8]. This can lead to an energy rate interpretation form for Jpl for surface cracks as: 
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where Jpl,av is the average plastic J-integral across the crack front and can be written as:  
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Sharobeam and Landes demonstrated load separation in the test records of surface crack geometry under 
uniform tension [8,9,10] for plastic load line displacement and also plastic crack mouth opening displacement. 
A separable load expression for this geometry can be written as:  
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where σt is the remote tensile stress, σο is yield stress,  a is crack depth and c is crack width as shown in Fig. 1. t 
and W are specimen thickness and width, respectively. Load separation and the energy rate interpretation of 
Jpl,av lead to a single specimen form for Jpl,av for this geometry that can be written as: 
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The factor ζpl here is equivalent to (ηpl/b) in the single specimen Jpl form for two-dimensional geometries, as 
represented by Eq. (3), and it is a function of the crack depth to width ratio, a/c, crack depth to thickness ratio, 
a/t, and specimen thickness to width ratio, t/W.  Sharobeam and Landes [8] demonstrated also that the ratio 
between plastic load line displacement and plastic crack mouth opening displacement is independent of the 
amount of deformation which allows using either in Eqs. (8) and (9) as vpl. They also developed a mathematical 
representation for the single specimen Jpl,av form using the plastic crack mouth opening displacement as: 
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 where n is the material hardening exponent and G is the geometry function. This expression is developed for 
Ramberg-Osgood materials, which follow the stress-strain relationship given as: 
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where ε is strain, εo is yield strain and α is a constant. Detailed expressions for the ζpl factor and the geometry 
function G are given in references [8] and [11], respectively, for surface cracks with wide range of a/t, a/c, t/W 
and n values. 
 

The purpose of this study is to examine the variation of local Jpl along the crack front of semi-elliptical 
surface cracks and develop a relationship between the ratio of local Jpl to Jpl,av and the location at the crack front 
represented by the parametric angle θ as shown in Fig. 2. Using this relationship together with Eq. (10), local Jpl 
at any point of the crack front of a surface crack can be obtained. To study Jpl variation along the crack front of 
a surface crack and develop the required relationship, numerical records of J-integral versus θ for wide array of 
semi-elliptical surface cracks were generated using the finite element method. Material was selected to be a 
Ramberg-Osgood material with a hardening exponent, n, equal to 5. The specimen width and half height were 
selected to be eight times the specimen thickness. Crack depth to thickness ratio varied from 0.1 to 0.82 while 
crack depth to crack width ratio varied from 0.5 to 2.0. 
 
 
THE FINITE ELEMENT MODEL 
 

The symmetry of the geometry allowed the consideration of only a single quarter of the geometry in the 
model. The model contains 3042 nodes and 402 20-node hybrid brick elements.  The crack vicinity is 
represented by six rings of focused elements as shown in Fig. 3.  Each ring contains 36 elements; six elements 
along the crack front times six along half the circumference of the ring.  The structure of this model is close to 
those used by Kirk and Dodds [12] and Kim and Hwang [13]. To capture the plastic and elastic singularities at 
the crack tip, the crack tip side of the elements in the first ring are collapsed, the mid-side nodes of these 
elements are moved to the quarter point and the size of the elements in the first few rings are increased 
proportionally to the square root of their distance from the crack tip.  A FORTRAN program was developed to 
generate the mesh for the model according to the selected a/t, a/c and t/W values. The program also generated 
the input file for the finite element code used in this study, ABAQUS. In an early study [8], results of this model 
have been found to be in a good agreement with the experimental elastic-plastic test records of specimens with 
identical crack geometries [11] and also Newman-Raju numerical solutions for elastic J-integral. The results of 
this model were also found in good agreement with the results of a more refined model with similar structure 
but additional 2555 nodes and 396 element just in the crack vicinity [11]. 
 
 
FINITE ELEMENT RESULTS 
 
 To study the effect of a/t on the distribution of Jpl/Jpl,av along the crack front for different a/c values, 
models with a/c=0.5, 0.75, 1.0, 1.5 and 2.0 and a/t that varies from 0.1 to 0.82 were developed.  For each crack 
geometry, the model was run twice; one with a linearly elastic material and another with a Ramberg-Osgood 
elastic-plastic material. The plastic component of J was obtained by subtracting Jel obtained using the elastic run 
from the total J obtained using the elastic-plastic run for the same load. Jpl,av was, then, evaluated by integrating 
Jpl over the crack front as indicated by Eq. (7). The Jpl/Jpl,av distribution along the crack front for the different 
crack geometries are shown in Figs. 4-8.  It is clear from these figures that there are two trends for Jpl/Jpl,av 
distribution along the crack front. For shallow, wide cracks (a/t ≤ 0.4 and a/c ≤ 0.75), the distribution begins 
with a low value at the surface (θ = 0), then increases until it reaches maximum at the deepest point of the crack 

 



(θ = 90°). For deep, wide cracks (a/t ≥ 0.6 and a/c ≤ 0.75) and all circular (a/c = 1.0) and narrow cracks (a/c > 
1.0), the Jpl/Jpl,av distribution begins also with a low value at the surface, reaches a maximum value mostly 
between θ =15° and 30° then decreases gradually as θ increases.  The maximum Jpl/Jpl,av values for surface 
cracks that represent a transition between the two trends such as the two surface cracks: (a/t = 0.6 , a/c = 0.5) 
and (a/t = 0.5, a/c = 0.75) occurred between θ = 45° and 60°. For the cases where Jpl/Jpl,av reaches a maximum 
before decreasing, it can be noticed that the rate at which Jpl/Jpl,av decreases as θ increases depends on a/t such 
that the deeper the crack the higher the rate.  Similar trends for normalized J distribution were obtained by 
Yagawa, Ueda and Takahashi [15] for four different surface cracks with a/t = 0.4 and 0.8 and a/c = 0.2 and 0.6. 
Kirk and Dodds [12] results also for a surface crack with a/t = 0.13 and a/c = 0.38 showed similar trend to that 
of the shallow, wide surface cracks in this study.  The low value for Jpl/Jpl,av at the surface is contributed to the 
low constraint condition which results in a reduced order of singularity in the surface boundary layer[12].  From 
the figures, it is also clear that, for each of the studied a/c values, the Jpl/Jpl,av values for shallow cracks (a/t = 
0.1 to 0.4) are very close for the whole crack front. The difference is less than 6% at any point on the crack 
front. On the other hand, there is a wide scatter for the Jpl/Jpl,av values for medium to deep cracks (a/t > 0.4 to 
0.8) with a/c = 0.5, 0.75 and 1.0. This scatter, however, becomes narrow as a/c reaches 1.5 and collapses into 
almost a single line for the different surface cracks with a/c = 2.0. 
 
 To make sure that these distributions are uniquely related to the crack geometry (a/t and a/c) and not 
dependent on the amount of loading, Jpl/Jpl,av was evaluated for four different surface cracks at different levels 
of loading. The results of these evaluations are given in Table 1 which shows that the Jpl/Jpl,av values are almost 
identical for the different loading levels over the whole crack front except for the point at the surface (θ  = 0). 
This indicates that Jpl/Jpl,av distribution along the crack front of a surface crack is independent of the loading 
level at least for the loading range included in this study which is from a little below the yield value up to 
almost twice the yield value. 
 
 
NUMERICAL REPRESENTATION OF THE RESULTS 
 
 Several functions have been tried to provide a general fit for Jpl/Jpl,av distribution along the crack front. It 
was difficult to find a function that can capture the two different trends and provide a perfect fit for all the data 
points along the crack front. The following function simulated the two different trends of distribution with a 
reasonably close fit. 
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where f1(θ) represents Jpl/Jpl,av and A1, B1,C1 and D1 are the fit function coefficients. Figs. 9-12 show how this 
function fits the finite element data for Jpl/Jpl,av versus θ distribution for four different cracks. This fit function is 
labelled as the first fit function in these figures. It provides an excellent fit for all data points except for a narrow 
range around the maximum point for the cases where the maximum occurs at low θ values (θ < 45°). At these 
maximum points, the fit is off the finite element data by less than 4%.   
 

When the surface point (θ = 0), where Jpl/Jpl,av value showed a little dependence on the load level, is not 
include in the fit, a simple polynomial function of the third order provided also a reasonable fit for both trends. 
It was off by less than 2% for most of the data points except again where there is a maximum at θ below 45°. 
The difference between the fit and the finite element value at the maximum point is typically less than 4%. This 
fit function is shown in Figs. 9-12 and is labelled as the second fit function. It can be written as:  
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where f(θ) represents Jpl/Jpl,av and A, B, C and D are the fit function coefficients.  This function is applicable for 
the rangeθ = 7.5° to 90° where Jpl/Jpl,av values are found to be independent of the loading level. Because of the 
simplicity of this function and it is reasonable representation of the Jpl/Jpl,av distribution along the crack front, it 
is adopted in this study. Table 2 lists the coefficients A, B, C and D for wide array of surface cracks. 

 



TABLE 1: JPL/JPL,AV VERSUS θ  FOR DIFFERENT SURFACE CRACKS AT DIFFERENT LOADING LEVELS. 
 

Crack a/t=0.6, a/c=1.63 a/t=0.3, a/c=0.75 a/t=0.4, a/c=2.0 a/t=0.82, a/c=1.0 
 σt /σo = σt /σo = σt /σo = σt /σo = 
θ 0.9 1.1 1.3 1.2 1.5 1.8 1.1 1.3 1.5 0.9 1.0 1.1 

  0.0 0.69 0.78 0.83 0.43 0.47 0.48 0.86 0.91 0.93 0.65 0.70 0.73 
  7.5 1.17 1.17 1.16 0.79 0.78 0.77 1.24 1.24 1.24 1.30 1.29 1.28 
15.0 1.32 1.31 1.30 0.89 0.88 0.87 1.35 1.35 1.35 1.44 1.42 1.41 
30.0 1.18 1.18 1.18 0.99 0.98 0.98 1.17 1.17 1.17 1.22 1.22 1.22 
45.0 0.99 0.99 1.00 1.04 1.04 1.04 0.96 0.96 0.96 0.98 0.98 0.98 
60.0 0.85 0.84 0.84 1.07 1.08 1.08 0.78 0.78 0.78 0.86 0.86 0.87 
75.0 0.74 0.73 0.73 1.10 1.10 1.10 0.66 0.65 0.65 0.75 0.75 0.75 
90.0 0.71 0.70 0.69 1.11 1.11 1.12 0.62 0.61 0.60 0.70 0.70 0.70 

 
 Using this fit function, Jpl/Jpl,av distribution along the crack front of  surface cracks with a/t=0.1, 0.2,…or 
0.8 and a/c=0.5, 0.75, 1.0, 1.5 or 2.0 can be reconstructed. For surface cracks with different a/t and a/c values 
but within the studied ranges, Jpl/Jpl,av distribution can be obtained using one or two-dimensional fitting 
functions between the Jpl/Jpl,av distributions of neighboring surface cracks.  Because of the small increments in 
a/t, a linear or quadratic fit function can be used to construct Jpl/Jpl,av distribution for a surface crack geometry 
with a/t that is not included in the given array of surface cracks.  For surface cracks with a/c values that are not 
included in the array, a second or a third order polynomial fit is recommended. There are many commercial 
math packages that provide one and two-dimensional fitting functions. Using Jpl/Jpl,av distributions constructed 
by the fit functions given in Table 1 for surface cracks with same a/t but different a/c values in a third order 
polynomial surface fit, Jpl/Jpl,av distributions a surface crack geometry with a new a/c value that is within the 
range of the included a/c values can be obtained. Figs. 13 and 14 show a comparison between Jpl/Jpl,av 
distributions obtained by the finite element model and Mathcad 2000 two-dimensional fit for two surface cracks 
geometries with new a/c values. The two-dimensional fit provided Jpl/Jpl,av distribution that is very close to the 
finite element data. 
 
 

TABLE 2: THE FIT FUNCTION COEFFICIENTS FOR A WIDE ARRAY OF SURFACE CRACKS. 
 

  a/t= 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

A= -0.030 0.152 0.165 0.099 0.096 0.310 0.427 0.535 
B= 0.118 -0.193 -0.322 -0.365 -0.695 -1.381 -1.926 -2.462 
C= 0.592 0.826 0.943 1.003 1.185 1.602 1.845 2.059 

 
a/c=0.5 

D= 0.546 0.458 0.438 0.453 0.526 0.519 0.605 0.711 
A= 0.226 0.482 0.597 0.611 0.530 0.930 1.491 0.997 
B= -0.569 -1.036 -1.309 -1.471 -1.517 -2.454 -3.606 -2.690 
C= 0.799 1.043 1.187 1.285 1.341 1.809 2.258 1.472 

 
a/c=0.75 

D= 0.677 0.644 0.641 0.657 0.682 0.686 0.746 1.014 
A= 0.628 0.827 0.912 0.664 0.839 1.295 1.748 1.909 
B= -1.483 -1.822 -2.025 -1.639 -2.114 -3.096 -3.953 -4.040 
C= 1.022 1.203 1.323 1.123 1.397 1.879 2.149 1.781 

 
a/c=1.0 

D= 0.834 0.804 0.793 0.834 0.822 0.811 0.875 1.092 
A= 1.159 1.243 1.328 1.407 1.463 1.397 1.590 1.871 
B= -2.740 -2.894 -3.050 -3.238 -3.381 -3.360 -3.610 -3.958 
C= 1.304 1.411 1.520 1.635 1.706 1.713 1.671 1.623 

 
a/c=1.5 

D= 1.036 1.009 0.983 0.969 0.972 0.984 1.053 1.137 
A= 0.985 1.103 1.181 1.311 1.323 1.452 1.502 1.314 
B= -2.478 -2.720 -2.882 -3.150 -3.222 -3.491 -3.597 -2.994 
C= 1.043 1.142 1.204 1.311 1.372 1.523 1.550 1.019 

 
a/c=2.0 

D= 1.129 1.131 1.136 1.140 1.132 1.115 1.129 1.253 
 
 

 



 
CONCLUSION 
 
 Jpl/Jpl,av distribution along the front of surface crack geometries with wide ranges of a/t and a/c values 
were developed using the finite element method. Width and height of each geometry were selected to be eight 
times the thickness and the material is considered as a Ramberg-Osgood material with a hardening exponent of 
5. Two trends for Jpl/Jpl,av distributions along the crack front have been observed.  For shallow, wide cracks, the 
Jpl/Jpl,av ratio begins with a low value at the surface then increases until it reaches its maximum at the deepest 
point. For most of other studied crack geometries, the Jpl/Jpl,av ratio begins with a low value at the surface but 
reaches a maximum at θ below 45°, then decreases as θ increases.  It was also observed that Jpl/Jpl,av distribution 
for narrow surface cracks (a/c = 1.5 and 2) is  less dependent on a/t than that for circular (a/c = 1.0) and wide 
(a/c = 0.5 and 0.75) cracks. A general fit function that encompasses both trends was developed. Such a function 
can be used to construct Jpl/Jpl,av distribution for any surface crack with a/t and a/c within the studied ranges. 
Using the constructed Jpl/Jpl,av distribution and the mathematical representation of Jpl,av given in Eq. (10), a full 
representation of Jpl along the crack front at any stage of loading can be predicted. Other parameters that may 
influence Jpl/Jpl,av distribution such as thickness to width ratio and material hardening exponent are now under 
consideration by the author. 
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