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ABSTRACT

In order to describe damage of PbZrO;-PbTiO; (PZT) ceramics, a damage variable based on the continuum
damage mechanics is introduced, and an evolution equation of the damage variable for PZT ceramics is
formulated by taking into account effects of mechanical and electrical loads on the damage development.
On the other hand, the damage variable is introduced into piezoelectric constitutive equations of PZT
ceramics by using a modified cubes model; i.e. material constants in the constitutive equations are expressed
as a function of the damage variable. Then, a set of the piezoelectric constitutive equations and the
evolution equation of damage variable are employed to predict fatigue life under various mechanical and
electrical loading conditions, and the validity of the modeling is discussed by comparing the predictions
with experimental results. Finally, as an example of applications, the constitutive equations and the
damage evolution equation are applied to a crack growth analysis by using a double cantilever beam (DCB)
model, and the effects of electric field on the crack growth are discussed.
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INTRODUCTION

Piezoelectric ceramics are used in sensors and actuators because of their fast electromechanical response,
relatively high power of generating force and small size. In the operation of actuators, the piezoelectric
ceramics are subjected to mechanical and electrical loads cyclically, and damage such as cavities and
microscopic cracks in the ceramics develops by both loads. Since the damage causes change in
mechanical and piezoelectric properties and causes fracture of the ceramics finally, mathematical
description of the damage development is necessary to predict fracture of the ceramics as well as to control
actuators precisely.

Researches on description of the damage of piezoelectric ceramics in the framework of the continuum
damage mechanics have been published, so far. Chuang et al. [1] predicted fatigue life of a 4-point bend



PZT (PbZrO;-PbTiO;) ceramics by a finite element model. Jain and Sirkis [2] modeled the damage by the
micromechanics and discussed the effects of the damage on mechanical and piezoelectric properties. On
the other hand, Sun and Jiang [3] discussed fatigue crack growth under mechanical and electrical loads and
estimated it by the fracture mechanics. Moreover, the effects of electric field on fatigue life and crack
growth were discussed by other researchers [4, 5]. However, any damage evolution equation has not been
formulated appropriately by taking into account the effects of electric field on the damage.

In the present paper, a damage variable is introduced into piezoelectric constitutive equations by using a
modified cubes mdel [6]; i.e. material constants in the constitutive equations are expressed as a function of
the damage variable. An evolution equation of the damage variable is formulated by taking into account
the effects of electric field on fatigue life. In order to confirm the validity of the formulation, fatigue life is
simulated by using the constitutive equations and the evolution equation in comparison with experimental
results [7, 8]. Finally, as an application of the constitutive equations and the evolution equation, those
equations are applied to a double cantilever beam (DCB) model [9], and the effect of electric field on the
crack growth is discussed.

PIEZOELECTRIC CONSTITUTIVE EQUATION AND DAMAGE EVOLUTION EQUATION

Piezoelectric Constitutive Equations by Taking into Account Damage
In general, piezoelectric constitutive equations are given as follows:

O-(/ = C ikl gk/ - eml/ Em s (1 )

D/ = elr’\’lgk/ + Km Em > (2)

where o,,¢,, E, and D, are stress, strain, electric field and electric displacement, respectively, while

ez

Cuu» €, and i, represent elastic moduli, piezoelectric moduli and permittivity, respectively. The

miy
material constants are affected by damage such as cavities and microscopic cracks. Thus, if the damage is
expressed by a damage variable @ based on the continuum damage mechanics, the material constants are
given as a material function of o

Cr/kl = C{/kl (CL)), emr/ = em(/ ((U), Km = Km (a)) (3)

In the present paper, the damage is assumed to be isotropic for the sake of simplification.

Modified Cubes Model

If an isolated cavity in the material is assumed to be represented by a cube, it is classified into 3-0 type
connectivity introduced by Newnham et al. [10]. Since representative material constants of ceramics
including cavities are derived as material constants of two-phase composites by combining a series model
and a parallel model [6], the material constants are defined as a function of volume fraction of cavity easily.

The material constants in Eqns 1 and 2 in the poling direction of piezoelectric ceramics are given as follows:

C=01-a)C,, 4)

F=(-a’)y, +— L Kako (5)
ak, +(1-a)x,,

e=(-a)e,, (6)

where C, k¥ and e are representative elastic, dielectric and piezoelectric constants, respectively, while
C,, x, and ¢, are elastic, dielectric and piezoelectric constant of the ceramics without cavity,

respectively. k  represents permittivity of air and « is a dimension of a unit cell in the modified cubes
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model.

Introduction of Damage Variable
If the damage variable is interpreted as reduction of load-carrying net area caused by cavities [11], the
damage variable ® is given by

w=1-—=1-

=a, (7

where S and S” are cross-sectional area and effective load-carrying area of a unit cell in the modified
cubes model. Therefore, representative elastic, dielectric and piezoelectric constants in Eqns 4-6 are
expressed as a function of damage variable @ as follows:

C =(1-w)C,, (8)
K, K
K=(1-w)x,+ — : ©)
’ \/EK'O +(1- \/E)K‘W
e =(1-w)e,. (10)
The piezoelectric constitutive equations in the uniaxial state in the poling direction are given as follows:

o =C(w)e-e(w)E, (11)

D=¢e(w)e+ik(w)E. (12)

Evolution Equation of Damage Variable

In the present paper, the effect of electric field on the damage is assumed to be introduced into the evolution
equation of damage variable through internal stress caused by piezoelectric effect [4, 5, 7, 8]. Since the
constitutive equations 11 and 12 are not taken into account domain switching, the application of the
equations is restricted within lower electric field than coercive field. Since, in general, ceramics tensile
strength is lower than compressive and shear strength, reference stress for damage criterion is expressed by

linear combination of the maximum principal stress o’ and the equivalent stress ¢"?. Accordingly, the
evolution equation of damage variable is formulated by

— (13)

dw iy ac’ +(1-a)c"? ‘
l-w |

where A, k, a are material constants, and they are determined by different experiments in stress states.

Figure 1 and 2 show simulations of fatigue life of PZT ceramics by using the constitutive equations 8-12
and the damage evolution equation 13 in comparison with experimental results [7, 8].

SIMPLIFIED ANALYSIS OF CRACK GROWTH

As an application of the constitutive equations 8-12 and the damage evolution equation 13, a simplified
analysis of crack growth in steady state is performed by using a double cantilever beam (DCB) model [9].

Formulation of DCB Model
In the DCB model, a plate with a crack is divided into three zones as shown in Figure 3; i.e. elastic zone
Q,, fractured zone Q, and damaging zone Q,. The elastic zone is treated as a cantilever beam in

which elastic shear deformation is dominant, while a crack is included in the fractured zone where any
deformation is not considered. The constitutive equations and the damage evolution equation are applied
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Figure 1: Fatigue life under DC electric field Figure 2: Fatigue life under AC electric field

to the damaging zone, in which stress state is assumed to be uniaxial. In the model, poling direction
coincides with axis y in the coordinate system o —xy, and electric field in the same direction as the

poling direction is positive.

Furthermore, for the sake of the simplification, crack growth in steady state at constant rate v and a
concentrated load W at x=0 are considered. Then, if the Galilean transformation, which transforms
the crack tip to the origin z=0 in the new coordinate system o'-zy, is introduced, Eqn 13 and the

relation between displacement and stress in the elastic zone are given as follows:

k
_v”;_“’zA[—l o } , (14)
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Figure 3: Double cantilever beam model
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where G,, h and A are the shear modulus, width of the elastic zone and width of damaging zone,
respectively.

Boundary Condition
In the present paper, w(x)=0 since a concentrated load W at x =0 are considered, and considering the

fracture condition at the crack tip, z =0, boundary conditions are represented as follows:

de w

o= (16)
w(0) =1, (17)
e(0)=¢,, (18)

where ¢, is fracture strain.

On the other hand, since the shearing force at infinity, z =0, may vanish and the strain generates due to
piezoelectric effect by electric field, boundary conditions at z = o are depicted as follows:

de
E(OO) =0, (19)

£(c0) = Z—OE (20)

0

Eqns 11, 14 and 15 are solved under initial conditions 16-18, then, distribution of stress, strain and damage
variable in front of the crack tip in the steady state of crack growth can be obtained. In the system of
differential equations, since the crack growth rate v and the fracture strain ¢, are unknown, v and g,
are determined so that the boundary conditions 19 and 20 are satisfied.

Results of Analysis
In the present paper, crack growth of PZT (PbZrO;-PbTiO;) ceramics is analyzed and following material
constants are employed:

C,=163N/m’, ¢, =7.1C/m*, x,=34.0x10"" C/Vm, G, =6.0x10" N/m’,
A=74x10"", k=51, h=0.05m, A=0.005m. (21)

Figures 4 and 5 show distributions of stress ¢ and strain &£ in front of the crack tip under various electric
fields E, and Figure 6 shows the effect of electric field on the crack growth rate v.

CONCLUDING REMARKS

In the present paper, damage such as cavities and microscopic crack in PZT ceramics was represented by the
damage variable based on the continuum damage mechanics, and introduction of the damage variable into
the piezoelectric constitutive equation and formulation of evolution equation of damage variable were
performed. Then, as an application of those equations, they were applied to the DCB model to analyze the
crack growth in the steady state, and the effect of electric field on the crack growth was discussed.

Since it is found that concentration of stress and electric field around the crack tip causes domain switching
which generates internal stress and affects the damage development, it is necessary to take into account the
domain switching in the constitutive equations and the damage evolution equation and to consider the



distribution of electric field around the crack tip in the analysis of crack growth. In order to perform
coupling analysis of stress-electric-damage field, the local approach based on the continuum damage
mechanics by using a finite element method is useful.
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Figure 4: Distribution of stress in front of crack tip  Figure 5: Distribution of strain in front of crack tip
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Figure 6: Effect of electric field on crack growth rate
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