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ABSTRACT 
 
When indentation is made on a thin film supported on a substrate, the ways by which the indenter’s 
volume can be accommodated are considered here. Depending on the relative strengths of the film and 
substrate, three regimes are proposed as follows: i) when the film is a lot harder than the substrate, the 
deformation may be modelled by assuming that the film is rigid; ii) when the film has similar strength as 
the substrate, the deformation pattern is likely to be spherical as similar to indentation on a homogeneous 
material; iii) when the film is a lot softer than the substrate, the substrate can be assumed to be rigid. 
Mechanistic models are proposed for the scenarios ii) and iii).  
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INTRODUCTION 
 
Indentation on thin films supported by substrates has been an important research subject as it is often 
necessary to know the mechanical properties of, for example, hard protective coatings. When the 
indentation depth is small, say within 10% of the film thickness, the substrate effect is negligible and 
hence the measured hardness becomes a sole property of the film material. However, at such small values 
of indentation depth, the measured hardness is prone to a strong intrinsic size effect (ISE), which we term 
the intrinsic effect here as it refers to the film material alone. When the indentation depth is a significant 
fraction of the film thickness, the substrate effect becomes significant. To illustrate this, we use data from 
our recent experiments on deposited metallic alloy films [1-3]. Illustrated in Figure 1(a) are the 
microhardness values versus indentation depth (h) for three film thickness values (t) obtained from 
3Ni/Al alloy films on pure Ni substrates. The h/t ratio is larger than 10% for all the data shown. It can be 
seen that the measured hardness exhibited a strong negative ISE, and the hardness results for different 
thickness values fall on distinct curves when plotted against h. However, when plotted against h/t in 
Figure 1(b), the results fall on a single curve. This indicates that, in this thickness range at least, the ISE 
obeys geometrical similarity with the film thickness being the characteristic length scale. To distinguish 
this regime from the intrinsic effect discussed above, we term this the extrinsic ISE. When the film 
remains adhered to the substrate during indentation, one may expect that the extrinsic ISE would be self-
similar so that the hardness depends on h/t but not on h alone. This is the situation observed in Figure 1 
(b). When film delamination occurs, the interfacial crack length represents another length scale in the 
problem, and so the indentation may no longer be self-similar. 
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Figure 1: Vickers hardness values against (a) indentation depth h, (b) indentation depth h normalised by 
film thickness t, (c) ln(t/h) for 3Ni/Al films of three different thickness on pure Ni substrates [2]. 

 
If the aim of the experiment is to measure the strength of the film, the strong ISE observed, no matter 
intrinsic or extrinsic, would certainly make life very difficult as it would not be obvious as to which 
hardness value on the curve to take, and the measured hardness is no longer roughly three times the yield 
strength. A reliable model of the ISE would therefore be highly desirable. Since in general the intrinsic 
effect dominates over quite a narrow range of small indentation depth ratio, we believe it is more useful 
to make use of the extrinsic ISE to get information about the film strength. It is therefore the aim of this 
paper to bring some insight into the extrinsic ISE by proposing mechanistic models for this type of ISE. 
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tendency of sliding across the film/substrate interface, and depending on the strength of the interface, the 
film may or may not delaminate, but this should not influence the material flow to a significant extent. 
We denote this mode as the radial mode. The other extreme is to have a very soft film on a hard substrate 
as shown in Figure 2(c). In this situation, the film material under the indent will be squashed by the 
indenter, but the substrate will have little deformation. A large shear stress will be set up across the 
film/substrate interface. If the interface is weak, it will then crack. Once film delamination has occurred, 
the indentation volume is accommodated mainly by pushing the film material surrounding the indentation 
core in a more or less co-planar fashion along the film as shown in Figure 2(ci). There will be relative 
sliding of the film material over the substrate, and when the delamination crack size is large enough, the 
elastic portion of the delaminated film may buckle upward. This mode is in fact similar to that considered 
by Evans and Hutchinson [5] who have also provided experimental evidence for its existence. We denote 
this here as the planar mode. If the interface is strong so that the film does not delaminate, the film 
material is difficult to flow radially outward in a co-planar fashion, so that the only way to accommodate 
the indenter volume would be to flow upward to as shown in Figure 2(cii). We term this the pile-up 
mode. Since the ISE of the rigid film mode in Figure 2(a) has already been considered by Jönsson and 
Hogmark [4], and the pile-up mode is difficult to model analytically, we will focus on the remaining two 
modes in the rest of this paper. 

 
 
RADIAL MODE 
 
When the film has similar strength as the substrate, the material flow pattern should not differ 
significantly from that in the indentation on a homogeneous half space. The latter has been modelled 
rather successfully using the cavity model [6]. For a convenient analytical model for the radial mode in 
thin-film, we will therefore follow the assumptions of this model. Hence, as a crude approximation, we 
assume in Figure 2(b) that the mean pressure po underneath the indenter creates plastic flow of material 
residing mainly inside a spherical plastic zone which is a sector of a hemisphere subtended at the centre 
of the indent.  This is more likely the case for blunt indenters like Vickers or Berkovich. Let c be the 
radius of this plastic zone, and r the radial distance of a point inside this plastic zone. Assuming spherical 
field inside the plastic zone, equilibrium requires rr rr /)(2/ σσσ θ −=∂∂ , where σr and σθ are the radial 
and hoop stresses respectively. With the Tresca criterion  σθ - σr = Yi, where Y is yield stress and the 
subscript i denotes either the film (f) or the substrate (s), the stress solutions are: 
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In deriving eqn. (2), the integration constants are chosen such that the radial stresses are matched across 
the film/substrate interface, and the boundary between the plastic zone and the elastic outer region for r > 
c which is also assumed to be spherical. The mean pressure inside the indent core r < h tanΨ, where h is 
the depth of the indent and Ψ the semi-angle of the indenter, is given by: 
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The plastic front at r = c can be located by considering compressibility inside the plastic zone in a similar 
fashion as was done previously [6]. Defining v = du(r)/dc as the rate of change of position u of a material 
point inside the plastic zone at r with respect to the plastic zone size c, the assumption of 
incompressibility leads to  for c > r > h tanΨ. Solution to this which matches the elastic 
region at r = c is 

0/2/ =+∂∂ rr vv
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where Es is the Young’s modulus of the substrate material. Noting that if the volume of the indent core is 
to be conserved during a depth increment of dh, 2πh2tan2Ψ du(h tanΨ) = πh2tan2Ψ dh. Hence, from eqn. 
(3),  
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Since the measured hardness H  po, substituting eqn. (4) into eqn. (2) gives 
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Ho is independent of t and h. Eqn. (5) indicates a falling trend of hardness versus indentation depth, i.e. a 
negative ISE, when Yf > Ys, and a positive ISE when Yf < Ys.  
 
In terms of applicability, the radial mode consideration here is subject to two limits. The first is that the 
indent size must be large enough to make the plastic zone spread well beyond the film/substrate interface, 
so that the presence of the substrate can be felt. The second limit is that for the cavity model to be a good 
approximation, the deformation field must stay more or less spherical. This will not be the case when the 
film and substrate have too different yield properties, or the indent is too deep compared with the film 
thickness. For the latter, if the indenter penetrates deeply into the substrate, it may be expected that the 
film profile would conform gradually to the indenter shape even if it does not break, and so the flow field 
would deviate significantly from being spherical. An intuitive estimate for the field to maintain roughly 
spherical is that h/t  1.  

  
 
PLANAR MODE 
 
The planar mode is similar to the situation considered by Evans and Hutchinson [5], who have assumed 
that the plastic and elastic zones reside entirely in the delaminated film. This is likely to be the case when 
the substrate is non-deformable and the film/substrate interface is weak. Here we follow a similar line of 
development but focus more on the interaction between the plastic zone and the elastic zone. We assume 
that the plastic zone surrounding the indent is a disk with radius c as shown in Figure 2(ci). Surrounding 
this is the elastic zone, which extends from r = c to r = a, where a is the radius of the penny shape 
interfacial crack. From volume conservation of the plastic zone, Evans and Hutchinson [5] showed that 
the radial displacement at the plastic/elastic boundary, ∆, is given by  
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Since the displacement beyond interfacial crack radius may be assumed to be negligible,   

 
u(r = a)  0.       (7) 

 
The elastic stress solutions which satisfy eqns. (6) and (7) are 
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where Ef and νf are respectively Young’s modulus and Poisson’s ratio for the film material. The elastic 
energy residing in the elastic region is given by 
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The elastic energy release rate G = -1/(2πa) (∂U/∂a) and from eqns. (8) & (9), 
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This expression for G is somewhat different from that of Evans and Hutchinson because here we consider 
a radial field according to eqn. (8) but in Evans and Hutchinson, a uniform compressive stress state was 
assumed. A stable crack size will occur when G = KII

2(1-νf
2)/Ef, where KII is the mode II critical stress 

intensity factor of the film/substrate interface. From eqn. (10), this stable crack size is given by: 
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The plastic zone radius is located by noting that at the elastic/plastic boundary at r = c, σθ - σr = Yf. From 
eqns. (6), (8) & (11), this requires 
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To relate the measured hardness with the plastic zone, a descriptive model must be assumed for the latter. 
For a blunt indenter, the region outside the indent core but inside the plastic zone, i.e. c  r  h tanΨ, may 
be assumed to be subject principally to plane stress. The equilibrium condition for this region may 
therefore be written as rYrr frr //)(/ =−=∂∂ σσσ θ . Solution of this is 
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The mean pressure po supporting the indenter is approximately equal to -σr(r = h tanΨ). Thus, from eqns. 
(13), (10), (11) & (12),  
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The measured hardness thus has the form 
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where )/,,/(1 tYKYEfYH fIIffff ν=  comprises the last three terms in eqn. (14) and is a term 
independent of h. Eqn. (15) indicates that for the planar mode, H will increase with the indentation depth, 
i.e. a positive ISE will result.  
 
As discussed by Evans and Hutchinson [5], buckling of the elastic region a  r  c may occur for 
sufficiently large po. They have shown using a post-buckling theory that this is equivalent to reducing KII 
by a factor α , where α (<1) is a parameter indicating the post-buckling stiffness of the film material. 
With this correction when the film buckles, the form of the depth dependence of H in eqn. (15) is 
unchanged. 
 
 
COMPARISON WITH EXPERIMENTS 
 
Because of space limitation, we will only discuss the radial mode here. Experimental results involving 
planar model will be dealt with in a forthcoming publication. For the radial mode, we use the hardness 
results on 3Ni/Al alloy films on nickel substrates shown in Figure 1(a). These were sputtered films and 
the experimental procedures have already been described elsewhere [1-3,7]. Being metallic films, they 
should be deformable and hence such a material system should represent a good prototype for the radial 
mode. As mentioned earlier, Figure 1(b) shows that the observed ISE obeys geometrical similarity, and 
one may also notice from eqn. (5) that the predicted ISE for the radial model also obeys similarity. In 
Figure 1(c) are shown the hardness results plotted against ln(t/h). It can be seen that the variation is 
approximately bilinear, with the turning point occurring at h ≈ t, i.e. at the situation where pierce-through 
is about to occur. The segment on the left of the turning point corresponds to the post-pierce-through 
situation and since the apparent hardness at increasing load should approach that of the substrate, this 
segment should deviate in the long run from the apparent linearity shown in Figure 1(c) when ln(t/h) 
becomes increasingly negative. On the right of the turning point, i.e. for the situation before pierce-
through occurs, it can be seen that the data fall reasonably accurately on a common straight line in 
agreement with eqn. (5). The measured slope of this straight line is ~ 2.30 GPa. Hence, from eqn. (5), Yf 
should be larger than Ys by about 1.15 GPa. The hardness of the Ni substrate is 1 GPa, and hence its yield 
stress is about 0.33 GPa. The estimated yield stress of the 3Ni/Al film is therefore about 1.5 GPa. In ref. 
[3], more results on alloy thin films are compared with the prediction in eqn. (5). To summarise, by 
comparing an experimental hardness vs depth variation with eqn. (5), the yield strength of a thin film 
supported on a substrate can be obtained.  
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