EXPERIMENTAL STUDY ON EFFECTS OF MECHANICAL PROPERTIES OF BEAM MATERIALS ON DEFORMATION CAPACITY OF BEAM/COLUMN CONNECTIONS

T.NAKAGOMI, K. MATOBA and Y. ICHIKAWA

Dept. of Architecture and Civil Engineering, Faculty of Engineering
Shinshu University
4-17-1 Wakasato, Nagano-shi, Nagano, Japan

ABSTRACT

The mechanical property of the beam flange influences the deformation capacity. When yield point, the yield ratio and strain hardening rate are low, deformation capacity of beam to column welded connection excels. 0°C Charpy absorbed energy of heat affected zone which was the fracture starting point was 130J or more. The Charpy absorbed energy at 0°C of the beam flange did not influence the deformation capacity. The specimen of the plastic region with a low yield ratio is larger than the specimen with a high yield ratio.

Keywords:
beam-to-column welded connection, mechanical property, fracture toughness, non-scallop method, deformation capacity

1. Introduction

HyogoKen-Nanbu Earthquake in 1995, brittle fracture to accompany beam-ends junction of an architectural iron frame the plastic deformation was confirmed. Absorbed energy (vEo) of 0°C by the Charpy impact test of the steel material is thought by one of factors which influence brittle fracture at the edge of the beam[1]-[3]. In the SM material (B and C material) and SN materials (B and C material), the lower bound value of vEo is provided for. This research aims the examination of the mechanical property and vEo of the steel material used for the beam of the influence given to the deformation capacity of junction by using the specimen which models the beam-column welded connection.

2. Outline of experiment

2.1 specimen shape and experiment parameter

The specimen assumed the shop welding junction type. The size of the beam used six kinds of steel materials of B material of A material of rolling H shape steel RH-400×200×13×21, C
material, H material, and welding assembly H shape steel BH-400×200×12×25, E materials, and F materials. It indicates the mill sheet value of a mechanical property and a chemical element in Table 1. It assumed the beam-ends detail to be a scallop industrial method (Are of the scallop bottom was 10mm) and a non scallop industrial methods. Figure 1 shows the specimen shape. Of each of the scallop specimen and the non scallop specimen which used six kinds of steel materials at 0°C in examination temperature; The non scallop specimen of five steel kind did the load testing room temperature (17°C-20°C).

Table 2 shows the experiment parameter. The loading was based on amount cδp of the bending deformation at all plasticity yield strength (cPp) of obtaining the beam material all sections as effective. Figure 2 shows the loading pattern.

2.2 Material examination of steel material used for beam

It investigated the flange parent metal of each steel material and the material property in the weld with the butt weld splice. Table 3 shows the tension test result. H material and A material of yield
point were high, and, next, C material, B material, E material, and F material were low values. The yield ratio became a high result in order of H material > A material > C material > E material > B material > F material. Table 4 shows the Charpy impact test result. The specimen name shows the kind and the position where it gathers the steel material. S shows the parent metal, f shows fillet, and h shows HAZ.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>vp (J)</th>
<th>vp (%)</th>
<th>Trs (℃)</th>
<th>Tensile test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A s</td>
<td>19</td>
<td>88</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>B s</td>
<td>34</td>
<td>88</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>C s</td>
<td>286</td>
<td>1</td>
<td>-51</td>
<td>-48</td>
</tr>
<tr>
<td>E s</td>
<td>240</td>
<td>15</td>
<td>-39</td>
<td>-27</td>
</tr>
<tr>
<td>F s</td>
<td>283</td>
<td>6</td>
<td>-28</td>
<td>-23</td>
</tr>
<tr>
<td>H s</td>
<td>55</td>
<td>78</td>
<td>-23</td>
<td>-16</td>
</tr>
<tr>
<td>A h</td>
<td>199</td>
<td>7</td>
<td>-31</td>
<td>-28</td>
</tr>
<tr>
<td>B h</td>
<td>160</td>
<td>47</td>
<td>-7</td>
<td>-1</td>
</tr>
<tr>
<td>C h</td>
<td>250</td>
<td>2</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>E h</td>
<td>260</td>
<td>33</td>
<td>-23</td>
<td>-13</td>
</tr>
<tr>
<td>F h</td>
<td>260</td>
<td>10</td>
<td>-30</td>
<td>-27</td>
</tr>
<tr>
<td>H h</td>
<td>130</td>
<td>47</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>A f</td>
<td>24</td>
<td>55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C f</td>
<td>282</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H f</td>
<td>68</td>
<td>77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RH Depo</td>
<td>80</td>
<td>60</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>BH Depo</td>
<td>28</td>
<td>88</td>
<td>51</td>
<td>42</td>
</tr>
</tbody>
</table>

3. Experiment result

3.1 Destruction properties

All specimens except Cn0 destroyed the brittleness from the edge of the width of the flange in the beam flange welding toe of weld part. Cn0 destroys the brittleness from the welding first layer neighborhood. The destruction is the following two types.

① In the direction of the width of the flange when the position becomes a starting point within 10mm. There are a lot of cases of 0℃.
② When the position at 10mm or more becomes a starting point in the direction of the width of the flange. There are a lot of cases of room temperature.

The P-δ curve of Fn1 and Hn1 decreases gradually when the load when maximum displacing increases the cycle, and the load has decreased obviously at the cycle to breaking.

3.2 Skeleton curve and deformation capacity's indices

It requested from the P-δ curve, and it shows the method of calculating the skeleton curve and the accumulation plastic deformation irreversible deformation in Figure 3. The skeleton curve accumulated and obtained the P-δ curve for the load to have exceeded the maximum value of the pre-loop in the P-δ curve. Table 5 shows the experiment result list. Accumulation value (ΣW) of the energy requested from energy (Ws) requested from the skeleton curve shown in Figure 5 when it compares deformation capacities of junction and each loop of the P-δ curve is thought. The actual experiment requested by expression 1 and 2, and examines the result by ηs and ηw. It examines ηsF and ηwF obtained by expression 3 and 4.
4. Consideration

4.1 strain properties

It obtained load-skeleton strain (ε_s) curve by the method of calculating the skeleton curve shown from load-strain (ε_s) curve in Figure 3. Figure 4 shows one example of the ε_s vs δ_s curve obtained from P-ε_s and P-δ_s (70mm of Cs0). δ_s compared ε_s at 45mm (4c $\delta_p F$) with each specimen in the ε_s vs δ_s curve.

Figure 5 shows the position where it affixes the strain gage used for the comparison.

Figure 6 shows the $\eta_s F$ vs ε_s relation between the scallop specimen and the non scallop specimen at 0°C. There is a tendency to which $\eta_s F$ becomes small when ε_s is large from Figure 8(a) and (b). The skeleton strain becomes small a non scallop specimen compared with the scallop specimen. Moreover, the specimen with a low yield ratio of the beam material shows the tendency that ε_s is small.

It can be said that the deformation capacity will grow by strain at the edge of the beam small. Moreover, it can be said that the specimen with a low yield ratio and the non scallop specimen extend the plastic region compared with the specimen with a high yield ratio and the scallop specimen, and strain at the edge of the beam has the tendency which becomes small.
4.2 Influence of mechanical property of beam material

It shows the relation between η_s and the material property by which it makes W_s obtained from the skeleton curve dimensionless according to yield strength of the material examination result below. When it assumes the material property to be a parameter, yield point, tensile strength, the yield ratio, and the strain hardening rate etc. of the steel material are thought. σ_{flow} is a value divided by two adding yield point and tensile strength. Figure 7-Figure 10 shows η_s and each relation. LowY.P. There is a correlation in $\sigma_{\text{flow}}, Y.R,$ and η_s.

Moreover, η_s has the growing tendency as the strain effect rate of Figure 10 grows similarly. When it uses the same steel material for the beam, deformation capacities grow more than the scallop specimens as for the non scallop specimen. The influence of the mechanical property is larger in η_s. It considers it with η_w and η_s which makes accumulation plasticity absorbed energy (ΣW) of the specimen at room temperature dimensionless. Figure 11 and Figure 12 show the $\eta_w-\sigma_{\text{flow}}$ relation and the $\eta_s-\sigma_{\text{flow}}$ relation. There is a tendency which grows as σ_{flow} becomes small η_w as well as η_s. In the experiment on room temperature, a tendency different from the $\eta_s-\sigma_{\text{flow}}$ relation is seen about the non scallop specimen. The difference between the specimen of room temperature and the specimen of 0℃ grows if it evaluates it with η_w.
5. Summary

a) Mechanical properties have significant influence on deformation capacity. Deformation capacity of beam to column welded connections is increased with the decrease of the yield point, the yield ratio and the strain hardening rate of the materials.

b) The Charpy impact toughness has little influence on the deformation capacity provided that the absorbed energy of heat affected zone at 0℃, from which the fracture initiates, is 130J or more.

c) The plastically deformed zone of the components is larger in the materials of low yield ratio, and the skeleton strain at the end of beam is generally small in the low yield ratio materials.

d) The detail of connection, whether it has a scallop or not, has relatively smaller influence on the deformation capacity than the mechanical properties of materials used.

REFERENCE

