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ABSTRACT  

The aim of this paper is to investigate the equilibrium length of a stable, mode I nanocrack wedged open by 
a disclination dipole and subjected to a remote stress. The crack is assumed to be of the Zener type with its 
head coinciding with the negative disclination of the dipole. Also assumed is the Barenblatt model, in which 
cohesive zones carrying the theoretical tensile stress exist at the crack extremities. The resulting Zener-
Barenblatt crack is modeled by edge dislocations. Exact equations for computing the crack length and 
cohesive zone lengths are presented. Numerical results show that for a stable nanocrack 10-9 to 10-8 m in 
length: (i) the cohesive zones constitute a significant portion of the crack, (ii) the traction-free zone length is 
significantly less than the predicted length of a purely elastic Zener crack with no cohesive zones, (iii) the 
traction-free zone length increases with the disclination dipole strength ω and arm length 2a, and (iv) the 
cohesive zone at the crack head decreases in length with both ω and 2a while that at the crack tip increases 
in length with these parameters.     
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1. INTRODUCTION  

Disclinations have been used to model various dislocation ensembles in materials undergoing 
transformation plasticity, e.g., twinning and strain-induced martensitic transformation. In particular, the 
front of a deformation twin can be modeled by a wedge disclination dipole [1, 2]. When a twin is blocked by 
an intersecting twin, a very short crack (nanocrack with length 10-9 to 10-8 m) can nucleate from the 
negative disclination of the dipole.  

The characteristics of such a nanocrack have only been recently predicted [3]. In this paper, a stable 
nanocrack subjected to remote mode I loading and wedged open by a disclination dipole is further studied. 
The wedge-shape crack is modeled as a Zener crack, which is characterized by the crack head opening bT. 
For a very short crack with length 10 – 100 times the Burgers vector magnitude, however, the classical 
traction-free Zener crack may no longer be physically valid. Consequently, the Barenblatt model is invoked, 
in which atomistic cohesion exists at the crack extremities. Tractions, which for simplicity are taken to be 
constant and equal to the theoretical tensile stress, act over these cohesive zones. Of primary interests then 
are the total length of such a Zener-Barenblatt crack, the cohesive zone lengths, and their dependence on the 
disclination parameters, i.e., the dipole strength ω and the dipole arm length 2a. Moreover, it is of interest to 



compare the length of the classical (elastic) Zener crack with that of the Zener-Barenblatt  (cohesive) crack, 
thus providing a basis for rejecting or accepting the classical model in lieu of the cohesive model. 

The technique of solution relies upon the dislocation modeling of the entire Zener-Barenblatt crack. Exact 
closed-form expressions have been obtained for the density B of the modeling edge dislocations, the crack 
opening displacement �v, and the normal stress σy = σ on the crack line (subscript y indicates the crack 
normal direction) [3]. On the basis of exact closed-form expressions for �v and certain consistency relations, 
the crack length and cohesive zone lengths are computed. These expressions are summarized in Section 2. 
The numerical results for B, �v, the crack length and the cohesive zone lengths are presented in Section 3. A 
summary of the main findings is given in Section 4.  
 
 
2. EXACT EXPRESSIONS FOR DISCLINATED ZENER-BARENBLATT CRACK 

Figure 1 shows the dipole centered at the origin of the x-y coordinate frame. The negative and positive 
disclinations of the dipole are located at x = a and x = �a, respectively. The strength of each disclination is ω. 
The crack extends from x = a to x = a + 2c on y = 0. At the crack head x = a, the opening displacement ∆v is 
bT. The left cohesive zone is located in the interval [a, a + l1], and the right cohesive zone in [a + 2c – l2, a + 
2c]. The parameters 2a,  2c, l1 and l2 denote the dipole arm length, the total crack length, the left and right 
cohesive zone lengths, respectively. The remote stress ∞σ is applied in the direction normal to the crack.  
 

 
The entire crack is modeled by a continuous distribution of edge dislocations with density B(x). As shown 
by the author in [3], B(x) is given by: 
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where D = G/2π(1-ν) (G is the shear modulus and ν the Poisson’s ratio), )'(xdσ is the negative of the sum 
of remote stress and the y-component of stress due to the dipole, i.e.: 
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and )'(xcσ is the cohesive stress distribution in the intervals [a, a + l1] and [a + 2c – l2, a +2c], i.e.: 
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 In Eqn. (3), H is the Heaviside function, and the cohesive stress is taken to be the constant σc. Also, the 
upper expression is used when the left cohesive zone is in compression, while the lower one is used when 

Figure 1: A Zener-Barenblatt crack subjected to disclination and remote loadings.   
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the left zone is in tension. The right cohesive zone is always under tension. The left cohesive zone may be 
under compression or tension since the head of a Zener crack is in compression whereas the negative 
disclination at the head exerts a tensile stress in this region. Whether the left cohesive zone is in 
compression or tension is resolved by the sign of the stress intensity factor at x = a of an elastic Zener crack 
subjected to the dipole and remote stress loading, see [3]. Substituting Eqns. (2) and (3) into Eqn. (1), a 
closed-form expression for B(x) can be obtained. Integrating B(x) with respect to x from x to a + 2c yields  
�v(x), expressible also in closed-form. The crack length 2c and the cohesive zone lengths l1, l2 can be 
determined by equating �v(x) evaluated at x = a + 2c – l2 to the critical value �cr , i.e.: 
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and from the following consistency relations (see [3]): 
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The upper and lower signs in Eqns. (4) - (6) correspond to the left cohesive zone being in compression and 
tension, respectively. These nonlinear equations can be solved numerically for c and l1, l2. The parameter �cr 
equals twice the Burgers vector magnitude 2b. The traction-free crack length 2c - l1 - l2 can be compared to 
the crack length 2c of a purely elastic Zener crack (i.e., the classical crack with no cohesive zones).  
 
 
3. NUMERICAL RESULTS 

All the numerical results are obtained for the body-centered-cubic metal tungsten (W), except in the last 
figure where iron (Fe), aluminum (Al), silver (Ag), copper (Cu) and nickel (Ni) are also considered. The 
parameter b, taken from [4], and γ, G, ν, taken from [5], are summarized in Table 1. Also listed is the 
cohesive stress calculated from σc = 2γ/�cr, where γ is the crystal-vapor surface energy. For the elastic Zener 
crack, the crack length is computed by equating the mode I stress intensity factor to the fracture toughness 
KIC. The latter is calculated from KIC = [4γG/(1-ν)]1/2, and the data are also shown in Table 1. Moreover, all 
numerical results in this paper are generated with bT  = 4 �cr and ∞σ = 0.02 GPa.  

 

 
TABLE 1 

MATERIALS DATA (FROM [4, 5]) 



metals b 
10-10 m 

γ  
Jm-2 

G  
GPa 

ν σc  
GPa 

KIC  
MPa m-1/2 

Al 2.8635 0.98 26.5 0.347 3.422 0.399 
Ag 2.8894 1.14 33.8 0.354 3.945 0.488 
Cu 2.5560 1.725 54.6 0.324 6.749 0.747 
Fe 2.4823 1.95 86 0.291 7.856 0.973 
Ni 2.4919 2.28 94.7 0.276 9.150 1.092 
W 2.7411 2.80 160 0.278 10.21 1.575 

 
 
Dislocation Density and Crack Opening Displacement  

Figure 2(a) plots B(x) versus x for a stable Zener crack wedged open by a dipole of strength ω = 1o and arm 
length 2a = 4 nm. The solid and dashed lines correspond to the Zener-Barenblatt crack and the elastic Zener 
crack (crack tips at x = a, and x = 2c), respectively. Also predicted are c = 12.5 nm, l1 = 6.3 nm, l2 = 8.1 nm 
for the former, and c = 7.9 nm for the latter. It can be observed that B(x) of the Zener-Barenblatt crack is 
singular at the boundaries between the traction-free zone and the cohesive zones, but is zero at the crack tip 
x = a + 2c and has a finite value at the crack head x = a. These singular points and the minimum point 
correspond to inflection points on the crack profile. In contrast, B(x) of the elastic crack is singular at both 
crack tips. Figure 2(b) plots �v(x)/2 versus x. The Zener-Barenblatt crack has a complex shape with three 
inflection points as remarked above for Fig. 2(a). It also has a flattened shape at both crack ends. The elastic  
Zener crack, in contrast, has only one inflection point and has infinite slopes at the ends.  
 

 
 
Crack Length and Cohesive Zone Lengths 

Figure 3 shows the dependence of the traction-free length (2c - l1 – l2), the total length 2c and the cohesive 
zone lengths of a stable Zener-Barenblatt crack on ω and a. Since 2c - l1 – l2 is of the order of 50% of 2c, the 
cohesive zones make up a significant portion of the nanocrack. Second, the traction-free zone length 
increases with ω and a. The total crack length has a more complex dependence on ω and a: at the smaller 
values of ω and a,  2c decreases with increase of these parameters; at the larger values of ω  and a, the 
reverse trend is evident. Third, the cohesive zone at the crack head (l1) decreases in length with both ω and 
a, whereas that at the crack tip (l2) increases with these parameters. Fourth, no stable solutions can be found 
for sufficiently large ω and a.  
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Figure 2: (a) Plot of the dislocation densities versus position for the stable Zener-Barenblatt and the 

elastic Zener cracks.  (b) Comparison of the opening displacements of the two cracks.  
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Comparison of Cohesive and Elastic Cracks 

Figure 4 compares the traction-free zone lengths of Zener-Barenblatt cracks to the crack lengths of elastic   
Zener cracks. The conclusion is that for the nanocracks considered here (with small crack head opening bT  = 
4�cr) a significant discrepancy exists between the two predictions. The predicted elastic cracks are 
significantly longer than the predicted traction-free zones. Also, the discrepancy increases as ω and a 
decrease in magnitude.  
 
 

 
 
 
 
Dependence of Crack Lengths on Material  

Figure 4: Comparison of the traction-free zone lengths of Zener-Barenblatt 
cracks with the lengths of elastic Zener cracks.  

Elastic Zener cracks: 
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Figure 3: Dependence of the traction-free zone length, the total crack length, and 
the lengths of the cohesive zones at the crack head and crack tip on the 
disclination dipole strength and arm length.  



Figure 5 compares the traction-free zone lengths and the total lengths of cohesive cracks in various metals. 
The lengths of elastic cracks are also plotted in the figure. All lengths are plotted against the cohesive 
strengths σc = 2γ/�cr = γ/b of the metals. In all cases, ω = 1o and 2a = 4 nm. The results show that the various 
lengths do not have a clear correlation with σc. Similarly, no clear correlation is found when they are plotted 
against γ, G or KIC. In contrast, the length of an elastic Zener crack subjected to the opening bT  (no 
disclination loading) varies monotonically with the material parameters. The figure also shows that the 
predicted length of a disclinated elastic crack overestimates the traction-free zone length of the cohesive 
crack but underestimates the total length of the cohesive crack.  
 
 

 
 
4. SUMMARY 

The equilibrium length of a stable mode I Zener-Barenblatt crack subjected to the loading of a disclination 
dipole is investigated in this paper. The crack length solutions are obtained by the method of dislocation 
modeling of the entire cohesive crack. Exact expressions constructed from the crack opening displacement 
and the consistency relations are solved numerically for the total crack length and the cohesive zone lengths. 
For small crack head opening displacement of the order of nanometers, numerical results indicate that: (i) 
the cohesive zones constitute a significant portion of the total crack, (ii) the elastic crack length, while 
significantly larger than the traction-free zone length, is significantly smaller than the total cohesive crack 
length, (iii) the traction-free zone length increases with the disclination dipole strength and the dipole arm 
length, and (iv) the cohesive zone at the crack head decreases in size with the disclination parameters, while 
that at the crack tip increases in size with these parameters.   
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Figure 5: Comparison of the total crack lengths (pentagons), the traction-free zone 
lengths (triangles) of cohesive cracks, and the crack lengths (crosses) of 
elastic cracks.  
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