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ABSTRACT

The am of this paper is to investigate the equilibrium length of a stable, mode | nanocrack wedged open by
a disclination dipole and subjected to a remote dress. The crack is assumed to be of the Zener type with its
head coinciding with the negetive disdination of the dipole Also assumed is the Barenblatt modd, in which
cohesve zones carying the theoreticd tendle dress exis a the crack extremities The resulting Zener-
Baenblat crack is modded by edge didocations Exact eguations for computing the crack length and
cohesive zone lengths are presented. Numerical results show that for a steble nanocrack 10° to 10% min
length: (i) the cohesve zones conditute a sSgnificant portion of the crack, (ii) the traction-free zone length is
ggnificantly less than the predicted length of a purdy dadtic Zener crack with no cohesive zones, (iii) the
tractionfree zone length increases with the disdination dipole srength w and arm length 2, and (iv) the
cohesive zone a the crack head decreases in length with both w and 2a while that at the crack tip increases
in length with these parameters.
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1. INTRODUCTION

Digdingtions have been used to modd vaious didocation ensambles in maeids undergoing
trandformation pladicity, eg., twinning and draninduced matendtic trandformetion. In paticular, the
front of a deformation twin can be modded by a wedge disdination dipole [1, 2]. When a twin is blocked by
an intersecting twin, a very short crack (nanocrack with length 10° to 10 m) can nudeste from the
negative disclination of the dipole.

The characteridtics of such a nanocrack have only been recently predicted [3]. In this paper, a dable
nanocrack subjected to remote mode | loading and wedged open by a disclination dipole is further studied.
The wedge-shape crack is modeled as a Zener crack, which is characterized by the crack head opening br.
For a very dhort crack with length 10 — 100 times the Burgers vector meagnitude, however, the classcd
tractionfree Zener crack may no longer be physcdly vaid. Consequently, the Barenblait mode is invoked,
in which aomigic coheson exids a the crack extremities Tractions, which for amplicity are taken to be
congant and equd to the theoreticd tensle dress, act over these cohesve zones. Of primary interests then
are the tota length of such a Zener-Barenblatt crack, the cohesive zone lengths, and their dependence on the
diclination parameters, i.e, the dipole strength w and the dipole am length 2a. Moreover, it is of interest to



compare the length of the dassicd (dadtic) Zener crack with that of the Zener-Barenblait (cohesive) crack,
thus providing a bads for rgecting or accepting the dlasscal modd in lieu of the cohesve modd.

The technique of solution relies upon the didocation modding of the entire Zener-Barenblatt crack. Exact
closed-form expressons have been obtained for the densty B of the modeing edge didocations, the crack
opening displacement v, and the normd dress sy = s on the crack line (subscript 'y indicates the crack
norma direction) [3]. On the bads of exact closed-form expressions for v and certain consstency rddions,
the crack length and cohesive zone lengths are computed. These expressons are summarized in Section 2.
The numerica reaults for B, v, the crack length and the cohesive zone lengths are presented in Section 3. A
summary of the main findingsis given in Section 4.

2. EXACT EXPRESSIONS FOR DISCLINATED ZENER-BARENBLATT CRACK

Fgure 1 shows the dipole centered a the origin of the x-y coordinae frame. The negative and postive
disclinations of the dipole are located & x = a and X = a, repectively. The srength of each disdingion is w
The crack extendsfrom x = ato x = a+ 2con y = 0. At the crack head X = a, the opening displacement Dv is
br. The left cohesve zone is located in the intervd [a, a + 1], and the right cohesve zonein[a+ 2c -1, a +
2c]. The parameters 2, 2, |1 and |, denote the dipole arm length, the total crack length, the left and right
cohesive zone lengths, respectively. Theremote stress s, is gpplied in the direction normd to the crack.
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Figure 1: A Zener-Barenblatt crack subjected to disclination and remote loadings.

The entire crack is modded by a continuous didribution of edge didocations with dendty B(x). As shown
by the author in [3], B(X) isgiven by:
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where D = G/2p(1-n) G is the shear modulus and n the Poisson's rétio), s ,(X') is the negdive of the sum
of remote stress and they-component of stress dueto the dipole, i.e.:
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and s . (x') isthe conesve sressdidribution in the intervas[a, a + 1] and [a+ 2c—15, a +2¢], i.e:
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In Egn. (3), H is the Heavisde function, and the cohesve dress is taken to be the condant s¢. Also, the
upper expression is used when the left cohesve zone is in compresson, while the lower one is used when

S.(X)=



the left zone is in tenson. The right cohesve zone is dways under tendon. The left cohesve zone may be
under compresson or tendgon since the heed of a Zener crack is in compresson wheress the negdive
didination a the head exats a tensle dress in this region. Whether the left cohesve zone is in
compression or tenson is resolved by the Sgn of the dress intendty factor a x = a of an dadic Zener crack
subjected to the dipole and remote dress loading, see [3]. Subdtituting Egns. (2) and (3) into Egn. (1), a
closed-form expresson for B(x) can be obtained. Integrating B(x) with respect to x from X to a + 2cyidds
v(x), expresshle dso in dosad-form. The crack length 2c and the cohesive zone lengths 11, 12 can be
determined by equting v(X) evduaed & x =a + 2c — |, to the criticd vaue ¢, i.e.:
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and from the following consstency rdaions (see[3)):
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The upper and lower dgns in Egns. (4) - (6) correspond to the left cohesive zone being in compresson and
tenson, respectively. These nonlinear equations can be solved numericaly for ¢ and |4, |,. The parameter
equds twice the Burgers vector magnitude 2b. The traction-free crack length Z - 11 - |> can be compared to
the crack length 2c of apurely eagtic Zener crack (i.e, the dassca crack with no cohesive zones).

3.NUMERICAL RESULTS

All the numericd results are obtained for the body-centered-cubic metd tunggen (W), except in the last
figure where iron (Fe), duminum (Al), slver (Ag), copper (Cu) and nickd (Ni) are dso congdered. The
parameter b, taken from [4], and g G, n, taken from [5], are summarized in Table 1. Also liged is the
cohesve dress cdculaed from s¢ = 2d, where gis the aydd-vapor surface energy. For the dagtic Zener
crack, the crack length is computed by equating the mode | dress intengty factor to the fracture toughness
Kic The latter is cdculated from Kic = [4g5/(1-n)]Y?, and the data are dso shown in Table 1. Moreover, all
numerical resultsin this paper are generated with br =4, and s, = 0.02 GPa.

TABLE1
MATERIALSDATA (FROM [4, 9))



meds [ b g G n Sc Kic
10%m | Jm? GPa GPa MPam 2
Al 2.8635 | 0.98 265 0347 | 3422 [0.399
Ag 28804 | 1.14 38 0354 |3945 |0488

Cu 25560 | 1.725 | 546 0.324 | 6.749 | 0.747

Fe 24823 | 195 86 0.291 7.856 0.973
Ni 24919 | 2.28 9.7 0.276 9.150 1.092
W 27411 | 280 160 0.278 10.21 1575

Didlocation Density and Crack Opening Displacement

Figure 2(a) plots B(x) versus x for a stable Zener crack wedged open by a dipole of strength w= 1° andam
length 2 = 4 nm. The s0lid and dashed lines correspond to the Zener-Barenblait crack and the eadtic Zener
crack (crack tipsat x = a, and x = 2¢), repectively. Also predicted are c=12.5nm, [; =63 nm, [, =81 mm
for the former, and ¢ = 7.9 nm for the latter. It can be observed that B(x) of the Zener-Barenblait crack is
sngular a the boundaries between the traction-free zone and the cohesive zones, but is zero a the crack tip
X = a + 2c and has a finite vdue a the crack head x = a These dngular points and the minimum point
correspond to inflection points on the crack profile. In contragt, B(x) of the dadtic crack is sngular & both
crack tips. Figure 2(b) plots v(X)/2 versus x. The Zene-Barenblatt crack has a complex shape with three
inflection points as remarked above for Fig. 2(a). It dso has a flatened shape a both crack ends. The dadtic
Zener crack, in contragt, has only one inflection point and hasinfinite dopes a the ends.

B(x) L OV(x)/2 (m)

tractlonfree i @ 1.4x10 )
zone Y

inflection points

““*\ ..
10 ) "“-\__h
——  Zener-Barenblatt crack R =y \\\\
————— Elastic Zener crack 2x10 L ~_
) 5.x10° 1.5x10° 0 5,.x10 i.‘-~12-'ll % I_
Position, x (M) Position, X (m)

Figure 2 () Plot of the didocation dendties versus pogtion for the stable Zener-Barenblatt and the
elagtic Zener cracks. (b) Comparison of the opening displacements of the two cracks.

Crack Length and Cohesive Zone Lengths

Figure 3 shows the dependence of the tradionfree length (2c - 11 — I2), the totad length Z and the cohesive
zore lengths of a gable Zener-Barenblatt crack on wand a. Since 2c - |1 — |, is of the order of 50% of Z, the
cohesve zones make up a dgnificant portion of the nanocrack. Second, the tractionfree zone length
increeses with wand a. The totd crack length has a more complex dependence on wand a: at te amdler
vadues of wand a, Z decreases with increase of these paameters a the larger vadues of w ad a, the
reverse trend is evident. Third, the cohesive zone a the crack head (1) decressss in length with both wand
a, Whereas that at the crack ip (2) increases with these parameters. Fourth, no stable solutions can be found
for suffidently large wand a.



Figure 3. Dependence of the traction-free zone length, the tota crack length, and
the lengths of the cohesive zones  the crack head and crack tip on the
disdlination dipole strength and armlength.

Comparison of Cohesive and Elastic Cracks

Figure 4 compares the traction-free zone lengths of Zener-Barenblait cracks to the crack lengths of dadtic
Zener cracks. The conclusion is that for the nanocracks consdered here (with smadl crack head opening br =
4.) a donificant discrepancy  exigds between the two predictions. The predicted dadic cracks ae
gonificantly longer then the predicted traction-free zones. Also, the discrepancy increases as w and a
decrease in magnitude.
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Figure 4: Comparison of the traction free zone lengths of Zener-Barenblatt
cracks with the lengths of dastic Zener cracks.

Dependence of Crack Lengths on Material



Figure 5 compares the tractionfree zone lengths and the totd lengths of cohesve cracks in various meas
The lengths of dadic cracks are dso plotted in the figure. All lengths are plotted agang the cohesve
srengths s = 2d = gb of the metds. In dl cases, w= 1° and 2a = 4 nm. The results show that the various
lengths do not have a clear corrdaion with s.. Smilarly, no dear corrdation is found when they are plotted
agand g G o Kic. In contrad, the length of an dadic Zener crack subjected to the opening br (no
didinaion loading) vaies monctonicdly with the materid parangters The figure dso shows tha the
predicted length of a disclinated dadic crack overesimates the traction-free zone length of the cohesve
crack but underestimates the tota length of the cohesive crack.
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Figure 5. Comparison of thetota crack lengths (pentagons), the traction-free zone
lengths (triangles) of cohesive cracks, and the crack lengths (crosses) of

dadtic cracks.

4. SUMMARY

The equilibrium length of a dable mode | Zener-Barenblait crack subjected to the loading of a disdination
dipde is invedigated in this paper. The crack length solutions are obtained by the method of didocation
modding of the entire cohesive crack. Exact expressons congructed from the crack opening displacement
and the consgency rdaions ae solved numericadly for the totd crack length and the cohesive zone lengths.
For amdl crack head opening displacement of the order of nanometers, numerica results indicate thet: (i)
the cohesve zones conditute a sgnificant portion of the tota crack, (ii) the dadic crack length, while
ggnificantly larger than the trectionfree zone length, is dgnificantly smdler than the totd cohesve crack
length, (iii) the tractionfree zone length increases with the disdlinaion dipole srength and the dipole am
length, and (iv) the cohesve zone a the crack head decreases in Sze with the disdination parameters, while
that a the crack tip increases in Sze with these parameters.
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