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1. Introduction and Problem formulation 
Symmetric  [0n, 90m]s cross-ply laminate with transverse cracks in 90-layers is shown in 

Fig. 1. Layers in the (x,y,z) -system are homogeneous, orthotropic and linearly viscoelastic 
with constitutive relations given by, 
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where the superscript i =0, 90 designate the layer and ε i ,  σ i  and Ei  denote the strain, stress 
and stiffness tensors, respectively. In general, stresses and strains are functions of  the position 
ξ  characterized by dimensionless coordinates   and . In the following, stress, strain 
and stiffness symbols without the superscript stand for averages over the entire laminate. 
Lower index, if given, specifies the component under consideration. For simplicity residual 
thermal stresses are not included in analysis. It is also assumed that all stresses arising during 
the formation of cracks have relaxed and the laminate before the displacement application is 
stress free. 
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Plane stress formulation is used and the only applied loading is time dependent displacement 
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Fig. 1  Schematic showing the cross ply-laminate with cracks in the 90-layers. 
 
For the assumed constant spacing of cracks the solution must satisfy:  
1. Stress equilibrium equations 
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2. Strain-displacement relationships 
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3. Boundary conditions.   
Based on symmetry considerations only a quarter of the full repeating unit (Fig. 1) is used. 
Symmetry conditions are on sides [ ]h,dz ,lx 0 ∈−=  and [ ] 0z ,0,lx 0 =−∈ . Traction free- 
conditions are on = d+b and on the crack surface hz = [ ]d,0z ,l0x ∈−= , applied constant 
displacement in x-direction, on [ ]h,0z ,0x ∈= .  
4. All stresses and strains at  are zero. 0≤t
 
2. Theoretical analysis 
The expressions needed for calculation of stress-strain dependence in an arbitrary point for a 
general loading ramp are derived using Laplace transform technique and applying the linear 
viscoelastic correspondence principle. This principle states that the solution of a given 
viscoelastic problem in Laplace domain may be obtained using the solution of the 
corresponding elastic problem. The only modification is that instead of elastic constants the 
Carson transforms of the corresponding relaxation functions are used. We denote by ( )sf ,ξ  
the Laplace transform of an arbitrary stress-strain state characteristic ( tf , )ξ  and the Carson 
transform of the set of relaxation functions by )(~ sE . Here  is Laplace parameter. Due to 
linearity 

s
( sf ,ξ )  is proportional to the applied average strain ε x : 
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Considering relaxation test with unit applied strain, 
sx
1

=ε  and denoting all time dependent 

functions with index R we have, ( ) ( )
s
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The inversion to time domain in this case becomes trivial if we realize that in relaxation test 
all stress-strain state characteristics are monotonous functions of time with a small curvature 
in logt scale and, hence, satisfy Schapery’s conditions for simple transformation [1]: 
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leading to   ( ) ( ))(,, tEtf k
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Function  is given by the linear-elastic solution using values of elastic constants equal to 
relaxation moduli in the particular instant t . 

Ψ

The expression for the general strain ramp, Eq. (4), may now be rewritten in terms of 
functions in relaxation test: 
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Inverse transformation to time domain leads to  
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Stress state characteristics for laminates with cracks subjected to given strain ramp are 
1. Macro-response (laminate stress) of the laminate  
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2. Stress in defined points ξ in layers where fracture may occur: 
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3. Average crack opening displacement normalized by the 90-layer half-thickness d: 
(Since the presented calculations are for open cracks, this parameter is needed to check the 
validity of the method.) 
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From Eqs (10)-(12) the response of a damaged laminate to an arbitrary strain ramp can be 
easily calculated if the corresponding functions are known for relaxation test. The procedure 
to determine the characteristics in relaxation test follows. According to Eq. (7) functions from 
relaxation test may be obtained by solving a sequence of elastic problems corresponding to 
varying parameter . It may be done using FE method or by developing approximate 
analytical models. In this paper the macro-response of the damaged laminate (relaxation of 
laminate stress and average crack opening) is calculated using closed form expressions for 
elastic case [2,3].  

t

Average crack opening displacement may be calculated using the simple power law which, 
based on FE parametric analysis, was obtained in [3] as 
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Laminate stress:   ( ) ( )tt ExxR
01.0=σ   (15) 

Stress in location ξ  at a given instant of time  is obtained solving the elastic problem by 
FEM, using elastic constants equal to the relaxation moduli at this instant of time.  

t

 
3. Numerical example 
We consider three-step loading as shown in Fig.2. In all steps the strain rate is constant, 

, and strain is first linearly increasing until t10 /ε %10 =ε , then decreasing to  and 
finally increasing again. Results are presented for CF/EP [0/90

%05.02 =ε
2]s laminate. 
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Fig.2   Three-step loading ramp with the same ramp rate in all steps applied to laminates.  
  
 Relaxation moduli of unidirectional lamina are shown in Fig 3. In relaxation test with the 
applied strain , the laminate stress relaxation follows Eqs (15). For a given crack 
density we use Eq.(14) for relaxation modulus. This expression includes the crack opening 
displacement  which is calculated using the power law Eq.(13). The calculated laminate 
stress and COD relaxation curves are presented in Fig.4. Fifth order polynomials are used to 
fit the calculated data. These fitting polynomials are used in Eqs. (10)-(12) for modeling stress 
response in the loading case shown in Fig.2.  
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Fig.3 Relaxation functions of the unidirectional CF/EP composite 
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 a)    b) 
Fig.4 Macro-response of [0/90-2]s CF/EP laminate  in relaxation test. Applied strain %1=ε x . Laminate 

with transverse crack spacing l0 /d= 5. a) )(txRσ ; b) )(tuanR  
 
As a critical site for further damage development we consider a) x=0, z=0 where the next 
transverse crack is expected, and b) the fibers in the 0-layer which are located at the tip of the 
transverse crack for possible fiber fracture. Stress relaxation at these points is shown in Fig.5. 
The polynomial fit to all time dependent functions in relaxation test is used to calculate the 
response to strain ramp shown in Fig.2. Expressions (10)-(12) are used. 
 
Before the response of the damaged laminate was simulated, the crack opening was inspected 
to insure that cracks remained open at all times. If due to hysteresis cracks would close, the 
used analysis becomes invalid. The calculated macro-response of the damaged laminate is 
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shown in Fig.6. Note, that in case of fast loading (t1=10) the loading, unloading and reloading 
curves almost coincide. For the low strain rate (t1=2e7), the unloading curve is below the 
loading curve and following reloading leads to slope which is higher than the initial loading 
slope, thus building a hysteresis loop. 
 
 
 
 
 
 
 
 
 
 
 
 
 a)    b) 
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Fig.5  Axial stress  in CF/EP  [0/90)(ti

xσ 2]s laminate. Relaxation test at applied strain %1=ε x . Crack 

spacing 5/0 =dl . a)  in 90-layer at x=0, z=0; b)  in 0-layer (average over the first closest 
the crack fiber). 
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a) b) 
Fig. 6 Stress-strain curve of [0/902]s CF/EP laminate with crack spacing 5/0 =dl ) obtained using the loading 
ramp shown in Fig.2. Strain rates t1=10 and t1=2e7 are used. a) the whole loading-unloading-reloading curve; 
b) detail at small strains. 
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Fig. 7  a)Stress in the middle of 90-layer (x=, z=0) ; b) Average stress   in the closest fiber to the crack 
tip (x=0, z/b=2.03) in 0-layer.  
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Fig.7a shows the x-axis stress response at mid-distance between two preexisting cracks due to  
the applied strain ramp. The hysteresis loop is remarkably large leading to compressive 
stresses (remember that the applied strain is positive at all times). The fact that stress at the 
considered point is compressive, while cracks are still open, is remarkable. Loading rate has a 
huge effect on the obtained stress level. Finally, Fig 7b shows the stresses in the 0-layer. The 
position considered is at the tip of the transverse crack. This stress, which is the average over 
the closest fiber diameter (layer thickness), gives an indication of possible fiber fracture due 
to stress concentration at the crack tip. Stresses are very high, approaching the fiber strength. 
They are much higher than predicted by commonly used analytical stress models.  Slower 
loading allows for stress relaxation and stresses are lower. 
 
4. Conclusions 
The stress response of a damaged laminate to an arbitrary applied strain ramp may be 
predicted by simple integration, provided the corresponding stress response in relaxation test 
is known. 
The time dependence of stresses in relaxation test is obtained using Schapery’s inversion 
method for Laplace transforms. To accomplish this, a sequence of elastic problems must be 
solved. 
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