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ABSTRACT

In this work the effect of residual stress on fracture initiation and growth is examined numerically. A
void growth and coalesence model is used to simulate the effect of local damage in the vicinity of a crack
in a ductile material. It is seen that, for the cases examined, a J-based chararacterisation of the crack
growth is still appropriate when residual stresses are present. The significance of the effect of residual
stress on crack growth is examined for two material ductilities.
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INTRODUCTION

The J-integral has been adopted by most current structural integrity procedures for cracked bodies
under combined secondary and primary loadings, e.g. R6 [?], BS 7910 [?] and EPRI [?] methods. The
implicit assumption when applying these approaches is that the effect of the residual stresses may be
accounted for through modification of the driving force, J , and the inherent toughness of the material
remains unchanged. However, this assumption may not be valid in view of the well known effect of
stress state (constraint) on the fracture toughness of materials, e.g. [?]. In this paper a numerical study
is carried out to assess the influence of residual stress on the fracture of a ductile ferritic steel.

COMPUTATIONAL FRAMEWORK

A finite element analysis of a three point bend testing configuration is undertaken. The analyses have
been carried out using the commercial finite element code ABAQUS V5.8 [?]. Full account is taken of
material and geometric non-linearities with the resultant non-linear equilibrium equations being solved
iteratively using Newton’s method (see [?]). A typical finite element mesh, which is composed of about
2000 four noded isoparametric quadrilaterals, is shown in Fig. 1. Due to symmetry only half of the
problem is analysed. The failure mechanism examined is that of void growth and coalescence, which
is incorporated into the model using a Gurson-type failure model, developed for porous materials, ([?],



[?]). Within this model, the yield surface of the material, Φ, is a function of the evolving void volume
fraction f ,
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where σe is the equivalent stress, p the hydrostatic pressure and σy the yield stress of void-free material.
The material parameters q1 and q2 depend on the hardening exponent n and on the ratio E/σy, where
E is the Young’s modulus [?].

The void growth rate is expressed in terms of the current value of f and the plastic strain rate tensor
ε̇P as

ḟ = (1− f) ε̇P : I , (2)

where I is the second order unit tensor. Finally, to completely define the material softening behaviour,
the critical void volume fraction, fe, at which the stress carrying capacity of the material is lost must
also be specified. Once the void volume fraction, f , at a material point reaches this value, the stiffness
at that point is gradually reduced to zero and the element is then removed from the analysis. If the
removed element is directly ahead of the crack tip, the crack is considered to have grown by an amount
equal to the element size. As seen in Fig. 1(b), ahead of the initial crack tip the finite element mesh
consists of regular square elements. The use of an element removal approach to simulate crack growth
introduces as an additional length scale into the problem, the size of these crack tip elements (see,
e.g., [?]). This characteristic length scale (i.e., local mesh size) should be associated with a physically
meaningful quantity such as the mean inclusion spacing or the CTOD of the material [?].

Figure 1: Finite element mesh used in the analysis (a) full mesh (b) near tip region

Evaluation of J integral

The evaluation of a path independent J integral value in the presence of residual stress has been
discussed in [?]. A path independent J-integral equation can be obtained via,
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where A is the area enclosed within a contour Γ and W is the mechanical strain energy density,
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0
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Note that A → 0 as Γ → 0 and implicit in this definition for J is the assumption that the initial strains,
ε0
ij, are bounded at the crack tip, [?].

The initial strains, ε0
ij in Eq. 3, are determined as the difference between the total strains and the

elastic mechanical strains at the initial state, i.e.

ε0
ij = (εij − εe

ij)|initial state . (5)



In this work, the residual stress in the specimen, before a crack has been introduced, is assumed to
be available. This residual stress is then introduced into the finite element model as an initial condition
and the effect of introducing a crack is represented by the removal of the symmetry boundary conditions
along the crack plane (see [?]). The initial state, at which ε0 is evaluated, is then the state after the
initial residual stress is input, before the crack is introduced. This procedure has been shown to provide
a path independent integral and, for linear elastic behaviour, results for J consistent with those obtained
using linear superposition, [?]. In this analysis, to avoid loss of path independence on contours near to
the growing crack tip, only the outer rings in the finite element mesh are used in the evaluation of J
(outside the fine square mesh region illustrated in Fig. 1 (b)).

Figure 2: (a) Uniaxial stress-strain behaviour of the material (b) J-resistance curves with two values of
initial void volume fraction, f0

MATERIAL AND SPECIMEN PROPERTIES

The uniaxial stress-strain behaviour of the material is shown in Fig. 2(a). This behaviour is representa-
tive of a low strength offshore steel (BS 7191 Grade 355 EMZ), which is being studied as part of a larger
overall program. The material has a yield strength of 350 MPa and the post yield strain hardening is
represented here as a power law with n = 5.

The values of q1 and q2 related to the mechanics of void growth in Eq. 1 have been taken from [?]
and are given by q1 = 2.0 and q2 = 0.8, respectively. The mesh size, D, (twice the size of the square
elements in the crack tip region) used in the crack growth calculations is taken as 50 µm which is on
the order of the measured CTOD for the BS 7191 Grade 355 EMZ steel. The sensitivity of the results
to the mesh size is currently under investigation. The critical void volume fraction fe is taken to be
10%.

The effect of the initial void volume fraction, f0 on the predicted resistance curve behaviour is
shown in Fig. 2(b). These results were determined from a study of a three point bend geometry with
overall specimen width, W , of 50 mm and initial crack size, a, of 30 mm. The high toughness material
with f0 = 0.3% is representative of the toughness of the ferritic steel, (BS 7191 Grade 355 EMZ) at
room temperature. The strong effect of f0 is noted by comparison with the predicted resistance curve
behaviour when f0 = 2%. Note that both materials have the same uniaxial stress strain behaviour,
shown in Fig. 2(a). The analysis for f0 = 2% terminates at ∆a = 200 µm due to numerical difficulties.
However, the trend of the behaviour is clear, even at this amount of crack growth.

EFFECT OF RESIDUAL STRESS ON RESISTANCE CURVE BEHAVIOUR

A representative residual stress distribution is examined in this paper. Future work will present results
for measured residual stress distributions due to welding, [?]. The distribution examined is shown in
Fig. 3, where the stress normal to the crack plane, σ22, normalised by the material yield strength, σy,



Figure 3: Residual stress distribution used in the analysis.

is shown. The value of a/W for the three point bend geometry is 0.6 so the crack tip is located at
x/W = 0.6. This residual stress profile was chosen to provide a reasonably high fracture driving force
due to residual stress. Note that, despite the fact that the uncracked body residual stress shown in Fig.
3 is close to zero along the crack faces, the J value due to the residual stress field determined from the
finite element analysis is still significant (11 N/mm).

The resultant load vs. crack growth curves are shown in Figs. 4 (a) and (b) for the two material
toughnesses. It is seen that for the high toughness material (Fig. 4(a)), there is a very small effect
of residual stress on the load to cause crack initiation, (note that the J value due to residual stress is
less than 1% of the initiation J) and after some crack growth, this effect almost disappears. For the
low toughness material, Fig. 4(b), however, there is a strong effect of residual stress on the initiation
load, though again the effect diminishes somewhat after crack growth. For the low toughness material,
the load corresponding to ∆a = 50µ m is about 20% lower when residual stresses are present. In
Figs. 4(c) and (d) the J-resistance curves with and without residual stress are shown for the two
materials examined. For the high toughness material (Fig. 4(c)), the resistance curves are almost
indistinguishable. For the low toughness material (Fig. 4(d)), there is a small difference (maximum
of 8%) between the resistance curves—the J resistance curve is slightly higher for the specimen with
residual stress. If it is assumed that J retains its validity as a fracture parameter when residual stresses
are present, any effects on the J resistance curve must be accounted through constraint arguments—the
loss of J dominance in the specimen. At higher loads the effect of the residual stress is expected to
diminish as the deformation is controlled by the applied mechanical load. Therefore constraint effects
are expected to be more significant for lower strength materials as indeed is observed here. Similar
trends have been observed in [?] where it was found that residual stress had a strong effect on the onset
of brittle fracture but a much reduced effect on ductile fracture.

DISCUSSION AND CONCLUSIONS

The effect of residual stress on the fracture behaviour of a high and low toughness material have been
examined numerically. A Gurson-type void growth model has been used to simulate the effect of damage
ahead of a growing crack tip. It is seen that the J−∆a behaviour of the material is relatively unaffected
by the existence of the residual stress field for both materials. The damage introduced by the residual
stress near the crack tip, is well accounted for by the use of J as the driving force for fracture. This
implies that when residual stresses are present, it is acceptable to incorporate the residual stresses into
the driving force and to assume that the material resistance is unaffected.

The geometry examined is a high constraint three point bend geometry and the residual stress field
examined has a relatively low J and associated T stress. Different geometrical configurations, materials
and residual stress distributions may lead to different results from those presented here. It should also



(a) (b)f0 = 0.3% f0 = 2%

(c) (d)f0 = 0.3% f0 = 2%

Figure 4: (a) and (b) Load vs crack growth for (a) high toughness material, (b) low toughness material;
(c) and (d) J-resistance curves for (c) high toughness material and (d) low toughness material.

be pointed out that if the residual stress has been introduced due to welding or by a heat treatment
there may be some effect on the material microstructure, in which case the intrinsic toughness of the
material may change. Such effects have not been examined in this analysis.
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