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ABSTRACT 
 
Isostress molecular dynamics and lattice statics methods have been used to compute theoretical 
responses of metals to various modes of loading at finite strain, with particular attention to elastic 
instabilities at points of bifurcation, as well as to post bifurcation phenomena leading to phase 
change or material failure.  The example of nickel in [100] and [110] loading is presented in 
detail.  Interatomic interactions are expressed both by simple Morse pair potentials and by more 
accurate semi-empirical embedded-atom-method potentials that have been parametrized 
specifically for studies of crystal elasticity at finite strain.  The mechanical responses and failure 
modes are strongly influenced by crystalline symmetries and incipient bifurcations. 
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INTRODUCTION 
 
A number of years ago, Hill [1] observed that "Single crystals free from lattice imperfections are 
used increasingly as microstructural components.  Perfect crystals are capable of elastic strains 
well beyond what can properly be treated as infinitesimal.  Their response to general loading is 
virtually unknown and is doubtless complex…"  In this context, Milstein and Chantasiriwan [2] 
noted that "Atomistic model computations can shed light on these complexities, particularly 
when comprehensive comparisons are made among different metals, crystal structures, and 
loading directions."  Topics of current interest [2-4] include theoretical strength, stability, 
bifurcation, and failure modes at large strain.  Here, we employ both the methods of lattice 
statics (LS), in which stable as well as unstable homogeneous deformation paths are studied, and 
the isostress molecular dynamics (IMD) ansatz Lagrangian of Parrinello and Rahman (P&R) [5], 
in which inhomogeneous bifurcations can occur naturally.  Extensive series of LS [6a] and IMD 
[6b] simulations have been carried out; initial results have appeared elsewhere [2,4].  The LS 



computations employ an embedded-atom method (EAM) [7] that reproduces identically all 
second and third order elastic moduli  and , atomic volume V, and cohesive energy E, and  ijC ijkC
yields good theoretical pressure-volume and phonon-dispersion curves, when compared with 
experiment.  The IMD simulations employ Morse interatomic potentials that were fit to two 
second order elastic moduli and atomic volume [8]; such potentials have been widely used in 
previous LS computations and yield large strain behavior in excellent qualitative agreement with 
more rigorous atomic models and experiment [8,9].  In this paper, we examine the behavior of 
nickel (Ni) under [100] and [110] loading as a particular example. 
 
 
RESULTS AND DISCUSSION 
 
Figure 1 shows the LS and IMD mechanical responses of the Ni Morse model; the LS behavior 
is typical of that previously observed for the complete family of Morse function crystals [8-10], 
as well as for quantum mechanically based pseudopotential models [11]; complete expositions of 
the LS response have appeared elsewhere [8,11]; a cursory description is provided here.  The 
crystal structure on the primary path (solid line) of Fig. 1a (and throughout Figs. 1b-d) is 
tetragonal ( in general), with uniaxial load  (per unit reference area) applied 
parallel to the [100] direction; transverse loads .  Uniaxial stress  
where  is the length of a fiber divided by its length in a reference state; the reference state here 
is the unstressed face centered cubic (fcc) configuration F on the primary path of Fig. 1a.  The 
primary path contains two additional unstressed states, body centered cubic B and a special 
tetragonal configuration T, and two invariant branch points [8,12], at which the tetragonal crystal 
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     Figure 1: Mechanical response of Morse Ni in (a) [100] and [110] and (b)-(d) [100] loading  



can bifurcate homogeneously, under strict uniaxial load, from the primary tetragonal path to a 
secondary orthorhombic path (dashed lines).  Under such branching, second order              
moduli relations identify the branch points; relations with higher  order  moduli  characterize  the 
branching, as is discussed below, in connection with the EAM results.  The primary path may be 
considered as face centered (fc) or body centered (bc) tetragonal.  With the moduli reckoned to 
the fc axes (as in Figs. 1 ), the left hand (lh) and right hand (rh) branch points occur 
respectively, at ; conversely, if the moduli were reckoned to the bc 
axes, the lh and rh branch points, respectively, would coincide with C C  
[8,11].  At a " C " eigenstate, to first order, the homogeneous eigendeformation is 

, where  indicates incremental change.  The 
crystal thus becomes body centered orthorhombic (bco) on the lh secondary branch and face 
centered orthorhombic (fco) on the rh branch; the lh and rh secondary paths also contain, 
respectively, the unstressed F and B structures, although oriented with the load parallel to the 
[110] directions of these cubic structures.  Thus, the respective secondary paths also represent 
primary paths of [110] uniaxial loading of the F and B crystals.  The branch paths and 
symmetries have profound effects on crystal elasticity [8,9,11]; e.g., note the considerably 
smaller value of the (local) maximum in s  in [110] loading than in [100] loading of fcc Ni, 
owing to the incipient bifurcation at the lh branch point.   

c,d
and

d

44 22 23C 0 C C= - =

22 23C=
3 1 2, with- dl = d = d =l l l

1

0
0

q

22 23 440 and C- = =

1 2 30, 0dl = dl = d

 
We turn next to the topic of stability.  In the Morse model of Ni, states T and B are elastically 
unstable; the stable ranges in Fig. 1a are thus on the tetragonal and the bc  orthorhombic paths, in 
the "neighborhoods" of states F.  The use of elastic moduli in assessing stability at finite strain 
has been discussed elsewhere [1,8,12]; here we simply note that, as criteria for stability on the 
tetragonal path, " C " locates an invariant eigenstate (its location is independent of the  
choice of geometric parameters  in the definitions C E ) [12], while 
" " occurs where the conjugate variable p  in the relationship 

 is stationary, and thus depends on the choice of q  [12].  The  represented in 
Figs. 1c,d are the Green moduli; and thus, in these figures, D=0 at the minimum value of the 
Green conjugate stress, which varies as . 
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Figures 1b-d compare the LS and IMD mechanical responses of Ni under [100] tensile ( ) 
and compressive ( ) loading.  In the IMD simulations, the Ni crystal was first equilibrated 
in a tetragonal configuration at constant temperature T and constant uniaxial [100] stress.  Either 
this equilibrated state remained stable indefinitely, or the crystal subsequently lost stability; both 
isothermal and adiabatic transformations were studied.  The equations of motion in the IMD 
simulations were integrated using a fifth-order Gear predictor-corrector algorithm [13].  
Isothermal conditions were maintained by rescaling the atomic velocities at each time step.  The 
dimensionless fictitious supercell mass W in the P&R Lagrangian was taken to be .  The 
time step size  was typically about 10

1 1l >

20

1 1l <

W =
tD -15 s; numerical accuracy and stability were tested for 

each thermodynamic state examined in our simulations.  The initial configuration was an fcc 
crystal represented by a cubic supercell.  For all of the IMD results reported in this paper, the 
simulation supercell contained 2048 atoms, periodic boundary conditions were employed, and 
the Morse potential cut-off distance was 5.6294 Å.  Systematic convergence tests confirmed that 
this supercell size does not affect the mechanistic details of the transition under consideration.  
The , at finite temperature, were computed from canonical fluctuation formulae [14]. rsC
 
States (A) and (B) in Figs. 1b-d indicate where stability was first lost in IMD simulations at 1 
and 300 K, respectively.  At 1 K, the crystal becomes unstable very near the states n 
tension and  in compression (states (A)).  At elevated temperature, the instabilities occur 
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earlier (states (B)), well before ; thus thermal activation "overcomes" the 
elastic strain energy barrier to bring about transformation. 

22 23C C and D= = 0

   
We concern ourselves next with the tensile instability, which leads to fracture.  (The compressive 
instability, which results in transformation to a hexagonal close packed (hcp) structure in 
adiabatic simulations, or to faulted  hcp in isothermal simulations, will be discussed elsewhere 
[6b].)  Previously, P&R [5] examined the behavior of the Morse Ni model in an adiabatic IMD 
simulation at and also found failure in the neighborhood of the C  state that was 
identified earlier by Milstein and Farber [10].  Here, we delve deeper into the failure 
phenomenon by examining (i) the influence of temperature and stress upon the elastic moduli 
and points of instability and (ii) the details of atomic movements during isothermal IMD 
simulations of failure. 
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                       Figure 2: Determination of critical stress and its dependence on temperature 

 
Figure 2a illustrates, for selected values of T, the stress dependence of the time to required for the 
onset of instability adiabatically, with T (of the equilibrated state) as a parameter; the asymptotic 
limits of stress at which the instabilities are not observed after "infinitely" long times are referred 
to as the critical stresses s .  Values of s  are indicated by solid triangles in Fig. 2a, and a 
complete set of  values is plotted vs T in Fig. 2b; s  is seen to decrease continuously and 
monotonically with T, vanishing at the theoretical melting point of about 2000 K.   

c c
cs c

 
The mechanism of bifurcation is seen in Figs 3a-j, which show the computer generated evolution 
of the atomic configurations during an isothermal IMD simulation at 1 K and 17.05 GPa.  This 
stress is slightly greater than the critical stress of 16.5 GPa at 1 K.  The load is [100] uniaxial, 
and thus is perpendicular to the plane of the paper in Figs. 3a-d, and is vertical and parallel to the 
plane of the paper (i.e. the (110)

2a 0<

 plane) in Figs. e-j. At , the crystal is face centered 
tetragonal, with lattice parameters ; the predicted bifurcation, d = , 
is seen to have initiated in frame b, after about 10 ps.  However, the bifurcation does not occur 
homogeneously throughout the crystal, but occurs in alternating domains that bifurcate 
withd .  In this stage, the atoms remain within their (100) 
planes, which in themselves remain fairly flat and parallel to each other, as seen in frame f.  As 
the instability proceeds, however, the atoms tend to "shear" out of the (100) planes, which, in 
turn, leads to void formation and failure.  The initial bifurcation is thus a precursor to the 
ultimate failure.  The shearing is seen predominantly in frame h.  Supercells containing as many 
as 16,384 atoms were tested and found to exhibit similar bifurcation and failure responses.
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Figure 3: Evolution of atomic configurations during bifurcation and failure in an isothermal IMD 
                           simulation of Ni under 17.05 GPa [100] tensile stress at T=1 K           
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              Figure 4: Mechanical response of the EAM model of Ni in [100] and [110] loading 
 
Finally, we examine the LS behavior of the EAM model of Ni, and compare it to that of the 
Morse model.  The EAM model is generally considered as more rigorous in that is has more 
substantial bases in theory.  Also, its linear and non-linear elastic properties in the unstressed fcc 
state are identically in accord with experiment.  As seen from Figs. 4, there is general agreement 
between the Morse and EAM models, in that both models: (i) exhibit bifurcations at 

, leading to orthorhombic structures under uniaxial stress, (ii) contain the 
unstressed F and T states on the bc orthorhombic (lh) branch, and (iii) have the unstressed B and 
T configurations on the fc orthorhombic (rh) branch.  Also, as in the case of the Morse model, in 
the EAM model, the crystal structures (and lattice parameters) in the states F, B, and T on the 
primary path are identical to the corresponding structures in states F, B, and T on the 
orthorhombic path, but differently oriented with respect to the loading direction; i.e., the loading 
direction is parallel to the [110] axes of the cubic crystals F and B that reside on the secondary 
paths.   
 
There is also reasonable quantitative agreement, i.e. s  is 17 and 21 Mpa, respectively, in the 
Morse and EAM models at the LS tensile instability (i.e. at ); the respective 
maximum stresses  on the primary path are 26 and 39 MPa, so s  is 0.65 in the Morse 



model and 0.55 in the EAM model.  One noticeable difference, however, is the slope d /  of 
the secondary path at the rh branch point, which is positive in the EAM model but negative in the 
Morse model; such branching, with positive slope, has not heretofore been observed in prior 
computations.  Whether or not the slope of the fco branch path influences the IMD bifurcation 
response is yet to be determined.  The slope on the secondary path at  is given by 
[15] 
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where, .  The term in brackets [ ] is the slope on the primary path at the 
branch point, which must be positive if branching terminates stability; thus the expression in the 
brackets { }, which contains the higher order moduli, must be less than c c or 
positive slope on the secondary path at c .  We have used lattice summations to calculate 
the moduli in both the Morse and EAM models, to fourth order, and verified Eqn. 1 by 
comparison with the slope d , computed directly on the branch path at  

2
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CONCLUSIONS 
 
Reasonably good agreement is found between the results of Morse model and (more 
sophisticated) EAM model lattice statics simulations of uniaxial loading of face centered cubic 
Ni single crystals.  For both models, under [100] uniaxial loading, a branch point is found in 
tension at the invariant “C22 = C23” eigenstate. The associated homogeneous eigendeformation 
leads to branching from the tetragonal crystal structure to body centered orthorhombic, via the 
bifurcation = 0, = , with the load 1aδ 2aδ 3a−δ l 1 remaining uniaxial, i.e., δ =  
(the 1-direction is coincident with the [100] axis, the transverse 2- and 3-directions are [010] and 
[001]).  

0=

 
In isostress molecular dynamics simulations of [100] loading of Morse model Ni crystals, it is 
also found that stability in tension is lost as elastic moduli C22 and C23 approach equality.  
However, the “predicted bifurcation” occurs locally, rather than uniformly; as shown by the 
computer generated evolution of the atomic configurations in the isothermal, isostress molecular 
dynamics simulations, during bifurcation and subsequent fracture.  That is, the crystal’s lattice 
parameters bifurcate inhomogeneously, with the 1aδ =  and, in alternating domains, 

 and .  The bifurcation occurs as a precurser to failure.  At 
elevated temperatures, thermal activation causes lattice instability prior to the convergence of 
C

2 3a aδ = −δ > 0 02 3a aδ = −δ <

22 and C23. The critical stress for failure s  is found to decrease continuously and 
monotonically with temperature, vanishing at the theoretical melting point of about 2000 K. 
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