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ABSTRACT

Complete asymptotic solutions for the Mode III, longitudinal or anti-plane shear, and Mode E applied
electric field cases are presented for idealized ferroelectric switching materials.  The mathematical
procedure required to solve these problems has been presented by Rice [1].  The purpose of this work is to
compare and contrast the mechanical and electrical solutions.  The constitutive behavior of the material is
specified by an initial linear response, a segment of non-hardening switching behavior, i.e. perfect plasticity
in the mechanical case, and finally a region where lock-up occurs.  The crack tip solution is characterized
by an outer solution with a standard r−1 2 singularity that is not centered on the crack tip, a switching zone
with the solution given by a simple radial slip line field, and an inner lock-up region which surrounds the
crack tip.
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1. INTRODUCTION

To reduce the mathematical complexity of analyzing the crack tip fields, the following assumptions are
made.  First, all electromechanical coupling effects including piezoelectricity are ignored.  This assumption
is not necessary for the purely mechanical anti-plane shear case.  Second, the constitutive response, i.e.
stress versus strain or electric field versus electric displacement, is taken to be completely reversible.  This
is to say that the stress or electric field is a unique function of the strain or electric displacement
respectively.  Borrowing the mechanics terminology, deformation theory plasticity is assumed.  This
assumption is used in preference to a more appropriate incremental theory in order to make the
mathematics tractable.



The remainder of the paper will be devoted to presenting the equations governing the distributions of stress
and strain or electric displacement and electric field and the solution to these equations very close to a
crack tip.  In order to emphasize the similarities between the mechanical and the electrical problems the
equations will be presented concurrently.

2. GOVERNING EQUATIONS

Equilibrium and Gauss’ law are given by
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where the shear stresses areτ τx xz=  and τ τy yz= , and the x and y components of the electric displacement

are Dx and Dy.

The shear strains, γ γx xz=  and γ γy yz= , and electric field components, Ex  and Ey , are derived from the

gradient of the z displacement, w , or the electric potential, φ, respectively.
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Eqn. 2 implies the following compatibility condition for the shear strains and that the curl of the electric
field is zero.
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The constitutive behavior of the material is assumed to be completely reversible, i.e. a deformation theory
in mechanics terminology is used.  For an isotropic material the stresses and strains or the electric field and
electric displacement are collinear.
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What remains is to specify the relationships between the magnitudes of the shear stress and shear strain and
the magnitudes of the electric field and electric displacement.  These magnitudes are given by
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For the mechanical problem the stress is specified as a function of the strain and the electrical problem is
characterized with the electric field as a function of the electric displacement.
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The shear modulus and dielectric permittivity are G and κ , the shear yield stress and coercive field are τ 0

and E0 , and the lock-up strain and electric displacement are γL  and DL .  The parameters γ0 and D0 are
related to the yield stress and coercive field by
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3. THE CRACK TIP

The crack tip solutions presented here along with the solution for a conducting crack are discussed in
further detail by Landis [2].  Consider a semi-infinite crack with faces lying along the negative x-axis and
tip at the origin.  It is assumed that the size of the switching zone, as yet to be determined, is much smaller
than the crack length or any other characteristic length in the geometry of the problem.  In the mechanical
case the crack faces are traction free.  For the electrical case it is assumed that the permittivity of free space
is zero and there is no normal component of electric displacement along the crack faces.  The boundary
conditions are then that

for ,      ,      y x Dy y= < = =0 0 0 0τ (8)

The solutions for the full fields with lock-up are now presented.  The reader is referred to Rice [1] for the
mathematical details of the solution procedure.  For both the mechanical and electrical problems the
switching regions are circles and the radii of the switching regions for the mechanical and electrical cases
are
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The lock-up zones are also circular, surround the crack tip and are embedded within the switching zones.
The radii of the lock-up zones are,
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The solutions outside the switching region are given by
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Here Xτ  and XE  represent the x coordinate of the centers of the switching zones.  The solution in the
switching region is a radial slip line field.  The solutions in these regions are
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As drawn in Figure 1 and as indicated by the region of validity for Eqn. 13 and Eqn. 14 the lock-up zone is
circular and it is tangent to the boundary of the switching zone.  This point of tangency lies on the crack
faces in the mechanical case and in front of the crack tip in the electrical case.  The solution within the
lock-up zone cannot be written in simple closed form with stresses or electric fields as functions of
coordinates as in Eqns. 11-14.  Instead the solution is given for the coordinates as a function of the strain or
electric field components.

Slip lines
originate from

this point

Switching Zones

Lock-up 
Zone

Mechanical Electrical

r

θ

Figure 1:  The switching and lock-up regions around a crack tip for the mechanical and electrical cases.

The crack tip solutions within the lock-up zones can be represented by contours of constant strain or
electric field magnitude.  The constant strain or electric field contours are circles that are not centered on
the crack tip.  The x and y coordinates along a given contour are then

  x X R= + cos2α (15)

y R= sin2α (16)

where X is the x coordinate of the center of the contour and R is the radius of the contour. The angle 2α  is
the angle between a line drawn to a point along the contour and the x-axis.  Then the components of shear
strain or electric field at this point along the contour are

mechanical:  γ γ αx = − sin ,     γ γ αy = cos (17)

electrical:  E Ex = − sinα ,     E Ey = cosα (18)



The parameters R γ( )  and X γ( ) for the mechanical case will be presented first.  For a given strain
magnitude the radius and the x coordinate of the center of this circle are
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For the electrical problem the radius of a constant electric field contour and the x coordinate of its center
are,
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4. DISCUSSION AND IMPLICATIONS FOR NUMERICAL METHODS

The analyses presented in Section 3 are most applicable to initially unpoled ferroelectric ceramics.  The
analysis of poled ferroelectrics and in general full electromechanical coupling is beyond the scope of this
work.  The inclusion of coupling in the electrical and mechanical fields requires more detailed constitutive
relations.  Hence, due to the complexity that this type of coupling introduces it is likely that the solution to
the crack tip problem will rely on numerical methods.  The features appearing in the simple solutions of
Section 3 will almost certainly appear in the more complicated fully coupled problem as well.  For
example, at the point of tangency between the switching and lock-up regions there is a large gradient of
strain in the mechanical case and electrical displacement in the electrical case.  This is an interesting issue
for a numerical solution since from a mathematical standpoint, Eqn. 1 and Eqn. 3, these field variables are
not equivalent.  Hence, a standard finite element formulation that interpolates displacement and electric
potential may be inferior to a mixed or hybrid formulation.  At the very least the solutions presented in
Section 3 offer an analytical check for any numerical method designed to solve field problems in
ferroelectrics.
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