
Analysis of Fracture Mechanics and Fatigue Behavior for EC(T) Specimen 
J.Z.LIU, X.R.WU, B.R.Hu and L.F.WANG 

(Beijing Institute of Aeronautical Materials, Beijing 100095, China) 
 
 
Abstract- In this paper, an approximate weight function (WF) for EC(T) specimen was given and verified. 
Using the WF, stress intensity factor and crack opening-displacement solutions for the specimen under pin 
loading and uniform pressure acting on the crack surface were obtained. The plastic-zone sizes from Dugdale 
model were calculated. Moreover, based on Dugdale model, a plasticity-induced crack-closure model for the 
specimen under fatigue loads was developed. Using the closure model, fatigue crack-closure behavior of the 
specimen was studied. 
 
 

1. Introduction 
Recently, an extended compact tension, EC(T), specimen, shown in Fig.1 has been developed for studying 

fatigue and fracture behavior of materials. The EC(T) specimen is considered an optimum design for 
laboratory fatigue-crack growth and fracture studies because of its distinct advantages compared to other 
cracked configurations, i.e. , standard compact tension, single-edge crack, and middle-crack tension 
specimens. These advantages are giving the experimenter additional working room, requiring low applied 
loads for an equivalent crack tip stress intensity factor, reducing the T-stress and crack fracture paths being 
self-similar, etc. [1]. The stress-intensity factor (SIF) solution and crack-surface opening displacements 
(CODs) at the crack mouth (x/c=0) and near the crack mouth (x/c=0.05) for the specimen under pin loading 
were derived by using the boundary-force method (BFM)[1,2]. Using an approximate method, the SIF 
solution for the specimen under pin loading was also obtained by Smith [3]. In this paper, following Smith's 
idea, an approximate crack surface weight function (WF) for the specimen is given. Using the weight function, 
SIF solution and CODs for the specimen under pin loading and uniform pressure acting on the crack surface 
are obtained. The plastic-zone sizes from Dugdale model are calculated. Moreover, based on Dugdale model, a 
plasticity-induced crack-closure model for the specimen under fatigue loads is developed. Using the closure 
model, fatigue crack-closure behavior of the specimen is studied.  

5mm

W

3.
7W

d=0. 2W

P

c

1.
5W

0x

0x

P

X

Y

        

d1

σ

W

c

σ

 
                          (a)                                 (b)     

Fig.1 Extended compact tension specimen (a). Pin loading and notch details, (b) Uniform segment pressure 
acting on the crack surface 

 
2. Weight Function For EC(T) Specimen 

The site of the load application is far enough away from the site of interest for the EC(T) specimen, the 
details of the method of load application are unimportant (colloquially, the principle of St. Venant). 



Considering this and using the principle of superposition, Smith represented the EC(T) specimen with an 
edge-cracked long strip loaded by a direct remote end tension load, P, and end bending moment, M (where P is 
pin load and M=0.3PW) [3]. The SIF solutions by this method agree well with the results from Piasick, et al's 
BFM. Following this method, crack surface weight function of the EC(T) specimen is assumed to be equal to 
that of the edge-cracked long strip. That is [4],          
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where the βi(α)-function were given in [4,5]. 

 
3. SIFs and CODs under pin loading 

3.1 SIF solutions 
According to two-dimensional weight function theory, the stress intensity factor due to an arbitrary set of 

applied loads can be obtained by integrating over crack length a product of these loads with the weight 
function m(α,x) of the cracked body [4]: 
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where the term σ(x) represents the stress distribution at the prospective crack site in the crack-free body.    
Under pin loading,  
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Where P is pin loading, B and W are thickness and width of specimen, respectively. x=X/W. By 
substituting eqs(1) and (3) into eq(2), SIF solution can be gotten as follow: 
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  Results from eq(4) and Piascik, et al's BFM[1,2] are given in Table 1, respectively, for comparison. 
Differences between the results are within 0.8%, very small. By fitting the their numerical solutions, 
Piasick ,et al got the following SIF expression: 
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Where d is the distance from specimen edge to load line, d=0.2W here. For 0.1≤c/W≤0.9, eq(5) is within 

±1.0 % of WF solutions. 
 



3.2 COD solutions 
The crack opening displacement between two crack surfaces can be computed by the following equation: 
 Where f(s) is the same as that of eq(4). E'=E for plane stress and E'=E/(1-ν2) for plane strain ( E is 

Young's modulus and ν is Possion's ratio). α0 =X/W.  
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Table 1 A comparison of normalized SIFs and crack-opening displacements under pin loading 

C/W   KBW1/2/P 
   (BFM) 

KBW1/2/P 
 (WF) 

E’BV0/P 
(BFM) 

  E’BV0/P 
(WF) 

   E’BV1/P 
(BFM) 

E’BV1/P 
(WF) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.84 

1.721 
2.586 
3.571 
4.904 
6.907 
10.25 
16.67 
32.21 
45.90 

1.723 
2.590 
3.578 
4.913 
6.919 
10.28 
16.73 
32.39 
46.25 

1.664 
3.750 
6.853 
11.99 
21.33 
40.30 
85.51 
227.6 
379.4 

1.668 
3.756 
6.865 
12.01 
21.34 
40.20 
84.76 
222.3 
367.3 

1.180 
3.194 
6.126 
10 .96 
19.74 
37.59 
80.21 
214.5 
358.2 

1.586 
3.593 
6.622 
11.68 
20.93 
39.71 
84.20 
221.7 
366.6 

 
Normalized displacements (E'BV/P) at crack mouth V0(X/W=0.) and near the crack mouth V1(X/c=0.05) 

from WF and BFM[1,2] , respectively, are also summarized in Table 1 as a function of c/W for comparison. 
For V0, WF solutions are within 3.2% of the BFM's results. For V1, WF solutions agree with those of BFM at 
0.2<c/W≤0.84 (Error is within 8%). However, at c/W=0.1, WF solution is obviously different from that of 
BFM.  

By fitting WF solutions, crack-surface-opening displacement expression under pin loading is obtained as 
follows: 
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Where FEC(T) is the same as that in eq(5) 
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When 0.2≤c/W≤0.7, eq(7) is within ±0.4% of WF solutions. At c/W=0.8, the errors are within 13.2%.   
The compliance method, that is, by means of measuring crack-mouth-opening displacement to monitor 

crack length, can be used during EC(T) fatigue crack growth testing. By fitting BFM's solutions, Compliance, 
in terms of crack length, is given by Piascik, et al [3] as follows: 
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     Where α=c/W. Equation (8) is within 0.3% of the same BFM numerical results, within 3% of the 
corresponding WF solutions aty 0<c/W≤0.9. By fitting WF numerical results, the following expression with 
high accuracy is given: 
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Equation (9) is within 0.6% of the same WF solutions for 0.1≤c/W≤0.9.   
   

4. SIFs and CODs under a segment of uniform pressure in the wake of crack tip 



4.1 SIF Solutions 
 According to eq.(2), let σ(x)=σ, SIF expression for the specimen under a segment of uniform pressure in 

the wake of crack tip, as shown in Fig.1 (b), is derived as follows: 
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Equation (10) is within 0.06% of the corresponding WF numerical results at 0.1≤c/W≤0.8 and 0<d1/c<1. 
d1 is the distance from crack mouth to initiating load position.    

 
4.2. COD solutions 

  The crack opening displacement between two crack surfaces for the specimen under a segment of 
uniform pressure in the wake of crack tip, as shown in Fig.1 (b), can be also computed by substituting f(s) in 
eq(10) into eq(6) and letting a0=d1/W in eq.(6). The WF solutions of normalized COD for the specimen with 
several d1/c at c/W=0.2 and 0.8, are shown in Fig.2. Unfortunately, it is very difficult to get a COD expression 
with high accuracy by fitting the corresponding WF numerical solutions under this loading case.  
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               (a)                                            (b) 
Fig.2 Normalized crack-surface-opening displacement for EC(T) specimen with uniform pressure applied to 

crack wake for various d1/c. (a) c/w=0.2, (b) c/W=0.8 
 

5. Plastic-zone from Dugdale model for EC(T) specimen 



The Dugdale model for EC(T) specimen requires that the "finiteness" condition of Dugdale be satisfied. 
This condition state that K at the tip of the plastic zone (at c+ρ) is zero. Thus, 
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Where α=(c+ρ)/W, α0=c/W, σ0 is flow stress, which is taken to be an average of the yield and ultimate 
strength. By eq.(11), the plastic-zone size (ρ) is calculated for various c/W and P/(BWσ0) ratios. An equation 
is then fitted to these results and is 
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 and A0=1.2231, A1 =-23.3888, A2 =226.401, A3 =-942.615, A4 =2080.0, A5 =-2301.44, A6 =1036.04. 
Equation (12) is within 3% of the corresponding numerical results at 0.1≤c/W≤0.8 and ρ/(W-c) ≤0.55. 

 
6. Fatigue crack closure behavior 

Based on two dimensional weight function method, a new crack closure analytical model was developed 
by two of the present authors, Liu and Wu[4,5] in order to extend the Newman model to various cracked 
geometries. Following the method, using the weight function method as explained above, a crack closure 
model for EC(T) specimen was established. In the model, the applied stress level Po/(BW), at which the crack 
surfaces are fully open, is obtained on crack surface-opening displacement. To find the applied stress level 
needed to open the crack surface at any point, the displacement at that point due to an applied stress increment 
(Po-Pmin)/(BW) is set to equal to the displacement at that point due to the contact stresses at Pmin/(BW). 
Thus, 
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 Where f(xi) is the crack surface-opening displacement at the point xi due to unit pin load P per unit 

thickness (B) and unit width (W). g(xi,xj) is the displacement at the point xj due to unit uniform stress acting on 
a segment of the crack surface with the center at xi. n is the total number of elements modeling crack-tip 
plastic-zone and residual plastic deformation along the crack surface. The maximum value of (Po)i gives the 
crack open load, Po. 

In this paper, EC(T) specimen is assumed to be made of 2024-T351 aluminum alloy. The mechanical 
properties of the material are UTS σu=457 MPa, yield stress σy=364Mpa, Young's modulus of elasticity 
E=69Gpa. Constraint factor, alf, ahead of crack tip is assumed to be equal to 1 and 1.73, respectively. 

Normalized crack opening loads under different stress ratios and constraint factors were obtained by the 
model above, and are given in Fig.3. From the figure, it is found that obvious effect of both stress ratio and 
maximum stress on crack closure exists. Crack closure is more distinct under lower stress ratio. The effect of 
maximum stress on crack closure is significant at low stress ratio and small crack-tip constraint factor. These 
results can be used to explain fatigue crack growth behavior of EC(T) specimen at different stress ratio and 
specimen thickness.   
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Fig.3. Normalized crack opening loads for EC(T) specimen made of 2024-T351 aluminum alloy under 
different stress ratios and constraint factors 

 
7. Conclusions 

(1) According to the principle of St. Venant, a crack-surface weight function of EC(T) specimen was 
assumed to be same as that of an edge-cracked long strip. Stress intensity factor and crack mouth 
opening-displacement solutions, obtained by using the WF, agreed well with the corresponding BFM’s 
solutions. Thus, the WF is verified to be with high accuracy, can be used for EC(T) specimen. 

(2) Using the WF, SIF and COD solutions of EC(T) specimen under pin loading and uniform pressure 
acting on the crack surface were obtained. The plastic-zone sizes based on Dugdale model were 
calculated. By fitting the numerical results, simple expressions with high accuracy were obtained for 
COD under pin loading, SIF under a segment of uniform pressure in the wake of crack tip, and the 
Dugdale plastic-zone size. 

(3) A plasticity-induced crack-closure model for the specimen was developed. Using the model, fatigue 
crack closure behavior of the specimen was analyzed. The results showed that an obvious effect of 
both stress ratio and maximum stress on crack closure exists. Crack closure is more distinct at lower 
stress ratio. The effect of maximum stress on crack closure is significant at low stress ratio and small 
crack-tip constraint factor. These results can be used to explain fatigue crack growth behavior of EC(T) 
specimen at different stress ratio and specimen thickness.    
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