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ABSTRACT

The present work analytically studies an ellipsoidal cavity and then a penny-shaped crack in a transversely
isotropic piezoelectric medium under uniform remote mechanical and electrical loading. Three-dimensional
(3D) analytic solutions are derived for the mechanical and electrical fields in the piezoelectric medium and
for the electric field within the cavity. An effective dielectric constant of the material is introduced here,
which involves the material dielectric, piezoelectric and elastic constants. The results indicate that the
electric field within the cavity is uniform and its magnitude increases with decreasing the ratio 4~ of the
dielectric constant of the cavity to the 3D effective dielectric constant of the material. When the cavity is
reduced into a penny-shaped crack, the crack mechanical and electrical fields depend on the ratio of a/ﬂ*,
where « is the ratio of the minor semi-axis to the major semi-axis of the ellipsoidal cavity. The electrically
impermeable and permeable penny-shaped cracks are just two extreme cases of the present solutions,
corresponding to &/ff —o0 and a/ff —0, respectively.
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INTRODUCTION

In purely elastic fracture mechanics, a crack is usually treated as a mathematical slit without any thickness.
To utilize this simplification for electrically insulating cracks in piezoelectric materials, one has to assume
an electrically insulating crack to be electrically impermeable [1-10] or permeable [11, 12]. However, a real
crack has a finite nonzero width and the crack geometry has a great influence on the fracture behavior of the
materials [13]. Furthermore, the two-dimensional (2D) results show that the crack fields depend on the ratio
of a/f [14, 15], where £ is the ratio of the dielectric constant of the cavity (or crack) to the 2D effective
dielectric constant of the material. The electrically impermeable and permeable boundary conditions along
the crack faces are only two extreme cases, corresponding to o/ff#— and o/#—0, respectively. In this paper,
we will demonstrate the similar results for penny-shaped cracks.

BASIC EQUATIONS



In three-dimensional piezoelectric elasticity, the equilibrium equations, in terms of stress o, and electric

displacement D;, are given by

c;,, =0, D, =0, i, j=1,2,3. (1)
The kinematic equations read
gy =5, +u,;), E =-¢,, 1ij=1,2,3, )

where ¢, u,, E, and &y denote the electric potential, displacement vector, electric field vector and the strain

tensor, respectively. The constitutive equations take the form

O, = Cuén —€yibr D, = ey, +K,E;, 1 J k I=1,2,3, 3)

where c;u, ex; and ky, are the elastic, piezoelectric and dielectric constants, respectively.
Let the 7@ - plane of the cylindrical coordinate system (r, 6 z) coincide with the isotropic plane of the

transversely isotropic medium and the poling direction be along the z-axis. The displacements and the
electric potential may be expressed by the four potential functions U; (i=1, 2, 3, 4) [7, 11, 16, 17]

. U, 14U, s 16U, aU, ou. au,

3
u, =y—-t—— , Uy =y ——L+ , U, =2k, —* =Yk, —-, 4
"oiSor r o8 T Sroe0  or igllé’z ¢Elz@z @
where k) and k; are constants to be determined. Putting Eq. (4) into Egs. (2), (3), and then (1) yields
o’U, 10U, 10°U, 0oU,
St ——+——5+— =0, =1,2,3,4, (5)
or r or r- 00 0z;
where z, =s,zands, =1/,/4, , and
2
Ry= (©)
C~Cn
and the other three roots A; (i=1, 2 3) are determined from the characteristic equation
AX +BA +CA+D=0. (7)
In Eq. (7), the constants 4, B, C, and D are combinations of material constants and given by
A=c;\(efs +cykyy),
B =2e5(e5¢)5 — e55¢p)) + 2015565, + Cuyiyy) = Cug(€3) + €1k ) + Ky (€ — €163, ®)
C =ey(e50,, +2€5¢,) —2ey(e5 + €305 + ) — K3 (0123 +2015C,4 = €11C33) + K 0330y + O35 + €5 ),
D = —c,, (€55 + cy3kyy).
In Eq. (4) k1; and ky; (i=1, 2, 3) are constants related to 4; by
Cuy (63 ek + (65 + &5k, _ i3k + ek, _ ek — K33k, ) (9)
€ O3 +Cy teuk +esky, o5 +ey +esk, — ik, l

Finally, we express the stresses and the electric displacements in terms of the potential functions



5| o, 1aU, 1 0°U, o°U, 10U, 10U,
O-rrzlz:l|:01167+c - or — tC,— 2 892 +(Cl3k1:+631k21) :|+(C11 CIZ)(F_Za_é;‘_;aear}
| o, 1aU, 1 0°U, o°U, 10U, 10U
0-«99:; 012? Cp o — t¢,—~ 2 8492 -+ (csky, +eyky,) o :| (e, — Clz)(r_z 594 _;8708;}
3 o’ U
0, = Elll (Cas + Craky; + €5ky) —- (10)
3 o°U, o'U
0.9 = l§|:(c44 + ek, + esky)— 5289} +Cy ?824,
€ o°U, 10°U
O, = E{(CM + ek, +esky;) oros } 44 ; 566; >
3 10°U, 1 aU, 1 aU 1oy, 12U,
o,= c ———— +—(¢,,—c¢ - -— ,
ro l=zl|:( - 2)( a 69 I" 89 ):| 2( 11 12)( ’ 6r }"2 892
3 o°U, 10°U.
D, zlzl{(els +e5ky; 11k2i)E:|_els;6%;’
3 10°U, o’U
D, = l§|:(615 +e5k;; llkZi);(?H@Z} te; (31”(324 ) (D
3 2U
= 2 (es +esky; — Kukz[)
A ELLIPSOIDAL CAVITY UNDER
REMOTE LOADING
Boundary conditions on the cavity surface * * *
Figure 1 shows an ellipsoidal cavity in an P B
infinite transversely isotropic piezoelectric
medium under remote loading. The center of
the cavity is located at the origin of the
coordinate system. The ellipsoidal surface is — -
X2
r’oz’ ~
or
2 2
—+=C), (13) rot o
-1 ¢
where C; =b>-a’andg=5b/C,, with the
unit out normal {r,, 0, n_}, Fig. 1 Ellipsoidal cavity
2 2
r z re oz
n = , }'ZZ = N = —+— 14
" a’N b’N b* (14

The boundary conditions along the cavity surface



¢ = ¢° (continuity of electric potential ),
on +o.n =0, o,n +o,n =0, o_n +o_n, =0, (traction— free), (15)

Dn, +D._n_ =0 (surface charge — free),
where the superscript “c” denotes a quantity inside the cavity.

Applied loads

For simplicity, we consider only the axisymmetric loading in the present work. Under the remotely uniform
loads of o

rr?o

o, and electric displacement D_", the corresponding displacements and electric potential are
u' =¢r, u, =€.z, 9p=—E’z+¢,, (16)

where ¢, is a reference electric potential, and

o0 o0 o0 o0 o0 o0 o0 o0
o-rr - (Cll + c12)grr + Cl3gzz - e31Ez > o-zz - 2013817‘ + c33gzz - e33Ez ’

(17)
D =2e;¢e” + e, +Kk,E”.
Solution
Assume that the electric field strength inside the cavity is uniform with the electric potential,
¢ =-Bz+ ¢, (18)
where ¢, is another reference electric potential and B is a constant.
In this case,
Us =0, (19)
and the other three harmonic potential function U; are given by [11]
U,=A4H(rz), i=1,273, (20)
with
H,2) = () +rva(a) - G @)
21

1. (g +1 1. (g +1 1 1. (qg+1) 1 g,
) =—1In| L2 | )=—1In| L= |- = y=——In| L0 oL
v,(q,) 5 [qi—lj v (q,) 5 (q[_lj w,(q,) 2 [%—J 241

i

where 4,, i=1, 2, 3, are constants and the independent variables ¢q,(r,z,), i=1, 2, 3, are defined implicitly by

+Iiocr, =007 IA)-ad . (22)

Denoting p’ =b”/(b> — A.a’), we have ¢; = p; for points (r, z) lying on the surface of the spheroid.
Substituting the above expressions into the boundary conditions, i.e., Eq. (15), yields the equations to
determine the constants 4; and B



Z /121 v, (p)A = B (continuity of electric potential),
i=l1

Cy(L+ k) + 5k,

3
Z (e, =)L (p) — 2 v (p) |4, =—-0,,
. ,. (23)

23 [+ k) + ek o (p)A = 67 (traction — free),

i=

3 A
23 [e,s(1+ k) — &, ky, b, (p,) A = DT — kB (surface charge — free),
i=1

where & is the electric permeability of the cavity. After the coefficients have been determined, the stress and
the electric displacement field everywhere can be calculated from Eqgs. (10) and (11).

If b approaches zero, i.e., « =b/a — 0, the cavity is shrunk to a penny-shaped crack. Using the kinematic
and constitutive equations of Egs. (2) and (3), the stress and the electric displacement in the crack plane can
be obtained

207 = ~
o_(r,0)= ZZZ [ le 1 + Arctan (r )2 — 1], 7= 2 >a (24)
I/' f—

D.(0) = 2(D§°ﬂ—d*>[ ( !

+ Aretan /(7 )’ —1]+d*, (25)

7)Y -1
where
d"=D"+0"M, forafinite f or f£ >0 anda/f — 0, (26a)
. D +olM . . :
d = 2 1915 for f/ > 0 and &/ has a finite nonzero value , (26b)
1+ a*
B
d =0 for " >0 anda/p — o, (26¢)
where
B =k kL, &k =detfMV]/det{M®], M, =detiM®]/detfM?], (27a)

Ml(il) =5 [044(1+k11)+615k21] M(l) 5 [044(1+k11)+615 2;] M(l) > [615(1+k11) K 21]

MO =MD, MO =MD, MO =-sk,, (27b)

li 1i

Ml(iS) = Ml(il)’ MS) = 5.k, M3(z5) = M3(zl')’ i=1,2,3.

Equation (27a) gives the effective dielectric constant of the material for the three-dimensional problems. The
results indicate that the mechanical and electric fields are strongly dependent on the ratio of o/f, like the
two-dimensional case in which the solution depends strongly on the ratio of /. The two extremes given by
Eqgs. (26a) and (26c) correspond, respectively, to the electrically permeable and impermeable boundary

conditions along the crack faces.

Defining the Mode I intensity factors K7 and K



K, =lim\27x(r-a)o_, K, =lim\2z(r-a)D_, (28)

one can obtain

K, = 2a;§JE, K, =2(D7 —ar")\/E : (29)
VA v

These results show that, as in the two-dimensional problems [14], the mode I stress intensity factor is the
same as that in purely elastic media and independent of the applied electric displacement. The electric
displacement intensity factor depends not only on the applied fields, but also on the material properties in

terms of d . For the two limiting cases, we have
w5 |a
K, =-202M, |~ (30)
V4

K, =2D;°\/E 31)
T

for electrically impermeable cracks. Using the electrically permeable or impermeable boundary conditions,
Kogan et al. [11] and Huang [12] obtained the intensity factors for electrically permeable cracks, while
Wang [4], Zhao et al. [7, 8] and Chen et al. [9, 10] obtained the intensity factors for electrically impermeable
cracks.

for electrically permeable cracks and
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