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ABSTRACT 
 
 
The present work analytically studies an ellipsoidal cavity and then a penny-shaped crack in a transversely 
isotropic piezoelectric medium under uniform remote mechanical and electrical loading. Three-dimensional 
(3D) analytic solutions are derived for the mechanical and electrical fields in the piezoelectric medium and 
for the electric field within the cavity. An effective dielectric constant of the material is introduced here, 
which involves the material dielectric, piezoelectric and elastic constants. The results indicate that the 
electric field within the cavity is uniform and its magnitude increases with decreasing the ratio β* of the 
dielectric constant of the cavity to the 3D effective dielectric constant of the material. When the cavity is 
reduced into a penny-shaped crack, the crack mechanical and electrical fields depend on the ratio of α/β*, 
where α is the ratio of the minor semi-axis to the major semi-axis of the ellipsoidal cavity. The electrically 
impermeable and permeable penny-shaped cracks are just two extreme cases of the present solutions, 
corresponding to α/β*→∞ and α/β*→0, respectively.  
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INTRODUCTION 
 
In purely elastic fracture mechanics, a crack is usually treated as a mathematical slit without any thickness. 
To utilize this simplification for electrically insulating cracks in piezoelectric materials, one has to assume 
an electrically insulating crack to be electrically impermeable [1-10] or permeable [11, 12]. However, a real 
crack has a finite nonzero width and the crack geometry has a great influence on the fracture behavior of the 
materials [13]. Furthermore, the two-dimensional (2D) results show that the crack fields depend on the ratio 
of α/β [14, 15], where β is the ratio of the dielectric constant of the cavity (or crack) to the 2D effective 
dielectric constant of the material. The electrically impermeable and permeable boundary conditions along 
the crack faces are only two extreme cases, corresponding to α/β→∞ and α/β→0, respectively. In this paper, 
we will demonstrate the similar results for penny-shaped cracks.   
 
 
BASIC EQUATIONS 
 



In three-dimensional piezoelectric elasticity, the equilibrium equations, in terms of stress ijσ  and electric 
displacement Di, are given by 
 

0,0 ,, == iijij Dσ ,        i, j=1, 2, 3.                                               (1) 
 
The kinematic equations read 

 

iiijjiij Euu ,,,2
1 ),( φε −=+= ,      i, j=1, 2, 3,                                                 (2) 

 
where ii Eu ,,φ and ijε  denote the electric potential, displacement vector, electric field vector and the strain 
tensor, respectively. The constitutive equations take the form 

 
lklijkijkkkijklijklij EeDEec κεεσ +=−= , ,   i, j, k, l=1, 2, 3,                              (3) 

 
where cijkl, ekij and κkl are the elastic, piezoelectric and dielectric constants, respectively.  
Let the rθ - plane of the cylindrical coordinate system (r, θ, z) coincide with the isotropic plane of the 
transversely isotropic medium and the poling direction be along the z-axis. The displacements and the 
electric potential may be expressed by the four potential functions Ui (i=1, 2, 3, 4) [7, 11, 16, 17] 
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where k1 and k2 are constants to be determined. Putting Eq. (4) into Eqs. (2), (3), and then (1) yields 
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where iiii szsz λ/1 and == , and  
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and the other three roots λi (i=1, 2 3) are determined from the characteristic equation 
 

023 =+++ DCBA λλλ .                                                                (7) 
 
In Eq. (7), the constants A, B, C, and D are combinations of material constants and given by 
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In Eq. (4) k1i and k2i (i=1, 2, 3) are constants related to λi by 
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Finally, we express the stresses and the electric displacements in terms of the potential functions  
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A ELLIPSOIDAL CAVITY UNDER 
REMOTE LOADING 

x2

 

                         (12)    

 
Boundary conditions on the cavity surface  

 
Figure 1 shows an ellipsoidal cavity in an 
infinite transversely isotropic piezoelectric 
medium under remote loading. The center of 
the cavity is located at the origin of the 
coordinate system. The ellipsoidal surface is 
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The boundary conditions along the cavity surface 
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                               Fig. 1 Ellipsoidal cavity
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where the superscript “c” denotes a quantity inside the cavity. 
 
Applied loads 
 
For simplicity, we consider only the axisymmetric loading in the present work. Under the remotely uniform 
loads of  and electric displacement , the corresponding displacements and electric potential are ∞∞

zzrr σσ , ∞
zD
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where 0ϕ  is a reference electric potential, and 
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Solution 
 
Assume that the electric field strength inside the cavity is uniform with the electric potential,  

 
cc zB 0

ˆ ϕϕ +−= ,                                                                          (18) 
 
where  is another reference electric potential and c

0ϕ B̂  is a constant. 
 
In this case,  
 

                         U4 =0,                                                                                  (19) 
 
and the other three harmonic potential function Ui are given by [11] 
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with          
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where Ai, i=1, 2, 3, are constants and the independent variables , i=1, 2, 3, are defined implicitly by ),( ii zrq
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Denoting , we have q)/( 2222 abbp ii λ−= i = pi for points (r, z) lying on the surface of the spheroid. 
Substituting the above expressions into the boundary conditions, i.e., Eq. (15), yields the equations to 
determine the constants Ai and B̂  
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where κc is the electric permeability of the cavity. After the coefficients have been determined, the stress and 
the electric displacement field everywhere can be calculated from Eqs. (10) and (11). 
 
If b approaches zero, i.e., 0/ →= abα , the cavity is shrunk to a penny-shaped crack. Using the kinematic 
and constitutive equations of Eqs. (2) and (3), the stress and the electric displacement in the crack plane can 
be obtained 
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where                                                                   
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Equation (27a) gives the effective dielectric constant of the material for the three-dimensional problems. The 
results indicate that the mechanical and electric fields are strongly dependent on the ratio of α/β*, like the 
two-dimensional case in which the solution depends strongly on the ratio of α/β. The two extremes given by 
Eqs. (26a) and (26c) correspond, respectively, to the electrically permeable and impermeable boundary 
conditions along the crack faces.  
 
Defining the Mode I intensity factors  D

II KK andσ
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one can obtain 
 

ππ
σ adDKaK zDzzI )(2,2 *−== ∞∞  .                                             (29)    

 
These results show that, as in the two-dimensional problems [14], the mode I stress intensity factor is the 
same as that in purely elastic media and independent of the applied electric displacement. The electric 
displacement intensity factor depends not only on the applied fields, but also on the material properties in 
terms of d*. For the two limiting cases, we have 
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for electrically permeable cracks and 
 

π
aDK zD
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for electrically impermeable cracks. Using the electrically permeable or impermeable boundary conditions, 
Kogan et al. [11] and Huang [12] obtained the intensity factors for electrically permeable cracks, while 
Wang [4], Zhao et al. [7, 8] and Chen et al. [9, 10] obtained the intensity factors for electrically impermeable 
cracks. 
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