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ABSTRACT 
In the present paper, an elasto-plastic nonlocal damage model is proposed for studying the mechanical 
response of structural elements made of cementitious materials. An isotropic damage model, able to describe 
the different behavior in tension and in compression of the material is presented. To overcome the analytical 
and computational problems induced by the softening constitutive law, a regularization technique, based on 
the introduction of the damage Laplacian in the damage limit function, is adopted. A Drucker-Prager type of 
plastic limit function is proposed considering an isotropic hardening. A numerical procedure, based on an 
implicit 'backward-Euler' technique for the time integration of the plastic and damage evolutive equations, is 
developed and implemented in a finite element code. Some numerical examples are carried out in order to 
study the structural behavior of elements made of concrete and of fiber reinforced concrete. 
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INTRODUCTION 
 
Cementitious materials, such as concrete and masonry, are widely used in structural civil engineering. These 
materials are characterized by softening response coupled with plastic effects, due to the development of 
microcracks and of anelastic deformations.  
The continuum damage mechanics represents an effective framework to model the softening behavior of 
cementitious materials [1], while the plasticity theory allows to take into account the anelastic material 
behavior [2]. Various macromechanical models have been proposed in literature to describe the mechanical 
response of structural elements made of cementitious materials. These models are mainly based on damage 
mechanics [3,4,5] and on plasticity theories [6,7]. 
In this paper, an elasto-plastic nonlocal damage model is proposed with the aim of developing an effective 
model able to predict the main features of concrete or masonry elements response. The stress-strain law 
accounts for damage and plastic effects. 
The damage evolution process is controlled by a variable, which represents an equivalent deformation. The 
damage limit function considers the different response in tension and compression of the material. 
In order to circumvent the pathological drawback due to strain and damage localization, a first gradient-
enhanced theory is proposed. The nonlocal damage model is obtained by introducing the Laplacian of the 
damage variable in the loading function. The presence of the gradient term has a regularizing effect and 
avoids mesh-dependence when finite element analyses are performed.  
The plasticity evolution law is governed by a plastic yield function with different threshold in tension and 
compression and with an isotropic hardening. The yield function and the plastic deformation evolution law 
depend on the effective stress. 



The proposed model is implemented in the finite element code FEAP [8]. Some applications are developed 
to study the behavior of structural elements made of concrete and of fiber reinforced concrete. 
 
 
AN ELASTO-PLASTIC NONLOCAL DAMAGE MODEL 
 
The following stress-strain law is adopted for cementitiuos materials: 
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where C is the second order elastic isotropic constitutive matrix, Pε is the plastic deformation, D is the 
damage variable that can vary in the range [0,1]; D=0 corresponds to the virgin material state and D=1 to the 
total damaged state. 
The rate constitutive equation is obtained by differentiating equation (1) with respect to the time: 
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The elasto-plastic nonlocal damage model is based on the following assumption: 
 

• the damage evolution is governed by the elastic strain Pe εεε −= in tension, and by the total strain ε  
in compression.  

• the plastic deformation evolution is controlled by the effective stress σ~  defined as: 
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Nonlocal damage model 
An isotropic nonlocal damage model is proposed. The damage evolution is controlled by the consistency 
condition with the classical Kuhn-Tucker conditions: 
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where F(Y,D) defines the damage limit function and Y is the variable associated to the parameter D, which 
controls the damage evolution. In particular, the variable Y is defined as follows: 
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where tY0  and cY0  are the initial damage thresholds in tension and in compression, respectively. The 
quantities tY  and cY  represents the equivalent tensile and compressive deformations and they are function of 
the elastic deformation and of the total deformation, respectively [7].  
The following damage limit function is proposed: 
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In formula (7) the nonlocal effect is due to the presence of the Laplacian of the variable D, i.e. D2∇ , in the 
damage limit function F(Y,D). The parameter h is linked to the characteristic length of the material and 
controls the size of the localization region. The material constants K and a control the damage rate growth 
and the softening branch slope, respectively [7]. 
 



Plastic model 
A plastic model with isotropic hardening, which takes into account the different strength in tension and in 
compression, is proposed. A plastic limit function ),~( qFF PP σ= , which depends on the effective stress σ~  
(3) and on the thermodynamic force q, is introduced. The force q is associated to the internal hardening 
variable α by the rational relation: 
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where χ is the hardening parameter. 
The plastic deformation evolution is governed by the following equations: 
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where Pλ  is the plastic multiplier that can be evaluated from the classical consistency equation 0λ =PPF . In 
the present model the following yield function is considered: 
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where cσ  and tσ  are the compressive and tensile yield stresses, respectively, I1 is the first invariant and J2 
the second deviatoric invariant of the effective stress tensor σ~ . 
 
 
SOLUTION PROCEDURE 
 
A numerical procedure, based on an implicit 'backward-Euler' technique for the time integration of the 
plastic and damage evolutive equations of the model, is developed. Each non-linear step is solved using a 
predictor-corrector iterative technique within the splitting method.  
In the predictor phase, the elasto-plastic problem (8)-(12) is solved with the damage field frozen. In this 
phase the plastic evolution is computed through a further nested predictor-corrector phase based on a return-
mapping algorithm.  
In the corrector phase the strain field is taken frozen and the damage evolution is evaluated solving the 
problem defined by equations (4)-(7). 
Hence, the solution algorithm consists in the following two steps: 

• an elasto-plastic predictor phase; 
• a damage corrector phase. 

The equation governing the two phases are reported in the following scheme: 
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NUMERICAL APPLICATIONS 
 
The plastic nonlocal damage model is implemented in plane-stress 3 and 4 node finite elements in the code 
FEAP [8].  
Some numerical examples are developed in order to study the structural behavior of elements made of 
concrete and of fiber reinforced concrete (FRC).  
In order to reproduce the concrete behavior the nonlocal damage model without plasticity is adopted; on the 
contrary to simulate the FRC response, characterized by the matrix softening and the fiber debonding and 
pull-out, the nonlocal damage model with plasticity is used. In fact, the adoption of a model characterized by 
a plasticity with rational hardening, reproduces the fact that when the matrix is completely damaged, the 
FRC response tends to a limit value corresponding to the fiber bridging action.  
The material parameters used for the concrete nonlocal damage model and for the FRC plastic nonlocal 
damage model are: 

• Concrete: 
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• FRC: 
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where Kt, at and Kc, ac are damage materials parameter in tension and in compression, respectively. In order 
to take into account the beneficial effects of the fibers in improving the material mechanics response the 
values of the parameters Kt, Kc, at and ac adopted for in the FRC model are higher than the ones used for the 
concrete.  



Initially, some analyses are performed to set the values of the material parameters in order to reproduce the 
concrete and FRC behavior in the pure tensile and compressive states.  
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Figure 1: Tensile and compressive behavior of concrete and of FRC 

 
In Figure 1 the stress-strain behavior in tension and in compression for the concrete and the FRC material is 
represented. It can be pointed out the beneficial effects of fibers in improving the mechanical response of 
concrete. In fact, in the post peak phase, when the fibers debonding and pull-out occurs the softening branch 
for FRC composite materials is less steep than for concrete. 
The bending behavior of a concrete and of a FRC beam is investigated.  
The geometrical parameters characterizing the analyzed beam are: 
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where L is the length of the beam and w is the height of the cross section. 
In Figure 2, the damage distribution in the FRC beam for different values of the prescribed displacement v is 
plotted. 

 
Figure 2: Damage evolution: a) v=0.26 mm, b) v=1.4 mm 

 



It can be noted that the introduction of the damage Laplacian in the limit function F prevents the damage 
localization in the weakest point of the beam. The damage process starts at the bottom of the middle section 
(see Figure 2(a)), where the maximum tensile strains are concentrated. Then it propagates towards the 
topside of the beam when the compressive strain becomes significative (see Figure 2(b)). 
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Figure 3: Load displacement curves for concrete and FRC 
 
In Figure 3 the bending behavior of the concrete and the FRC beam is plotted. It can be pointed out that the 
plastic nonlocal damage model is able to reproduce the post-peak behavior of the FRC and the results are 
mesh independent. 
 
 
CONCLUSIONS 
 
A plastic nonlocal damage model for cementitious material is presented. The model is able to take into 
account the different behavior in tension and in compression of the material. To avoid the mathematical and 
numerical problems, due to the localization phenomenon, a gradient nonlocal model is adopted. The 
numerical results show the capability of the model in describing the mechanical behavior and the damage 
processes in concrete and FRC structural elements.  
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