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ABSTRACT 
 
An analytical method for studying interacting branched cracks in an infinite plate is developed.   Based on 
superposition and dislocation theory, this method can be used to determine the full stress and 
displacement fields in a cracked material.  In addition, stress singularities at both crack tips and wedges 
(created by crack branching) are calculated so that crack growth and initiation can be analyzed at all 
locations of possible crack propagation.  A key concept of the method is the development of dislocation 
distributions that represent the opening displacements and capture the physical behavior of the cracks.  
Each distribution is a shaping series representing characteristic crack behaviors; therefore, development of 
effective distributions is a crucial aspect of this work.  Branched cracks of complex shapes under general 
loading conditions can be evaluated with this method.  Results show rapid convergence for few degrees of 
freedom (as measured by the number of dislocation distribution terms included in a particular analysis).   
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INTRODUCTION 
 

Material imperfections, corrosion, and fatigue loading can create conditions that cause cracks to branch or 
grow in such a way that they have multiple crack tips.  Damage zones containing cracks of such complex 
shapes, specifically many interacting branched cracks, pose a challenging problem when attempting to 
evaluate these areas for potential crack propagation and possible failure.  To address this type of fracture, 
a two-dimensional analytical technique has been developed to study interacting branched cracks in an 
infinite plate.  Based on superposition and dislocation theory, this method can be used to determine full 
stress and displacement fields in addition to stress intensity factors at crack tips and branch locations for a 
cracked plate.  Previous researchers have used similar approaches to study these types of cracks [1-6], and 
an extensive review of this area of research has been performed [6]. 
 



OVERVIEW OF THE ANALYTICAL TECHNIQUE 
 
To calculate the stress and displacement fields in an infinite plate containing an array of cracks of 
complex shape, each crack’s opening displacement profile must be determined such that all crack faces 
are traction-free under the given loading conditions.   (An opening displacement profile is the shape of a 
deformed crack.)  Once the opening displacement profiles are known, this solution can also be used to 
determine the stress intensity factors at the crack tips and branch locations in order to study crack 
propagation.  Superposition is applied at the global and local levels, and a dislocation distribution 
approach is utilized, to solve for the opening shapes of an existing crack array.  Several excellent texts on 
this subject are available in the literature [7-9]. 

  
Superposition 
To solve this boundary value problem, superposition is first applied at the global level by modeling the 
cracked plate as two separate problems (the trivial problem and the auxiliary problem) where the sum of 
their solutions equals the solution to the original problem.  The trivial problem consists of the given plate 
under the specified far field loading but without the cracks.  Meanwhile, the auxiliary problem is the 
given cracked plate, but without the far field loading.  The loading conditions for the auxiliary problem 
are instead prescribed tractions applied to the crack faces that are calculated to be equal and opposite to 
the stresses induced in the uncracked material at the location of the crack faces.  This loading insures that 
the crack faces are traction-free in the original problem when the stress field solutions to the trivial and 
auxiliary problems are summed.  Obtaining a solution to the auxiliary problem, which constitutes the bulk 
of the analytical and computational effort, requires the development and superposition of certain solutions 
on the local level reflecting detailed crack geometric features. 
 
To solve for the opening displacement profiles of the auxiliary problem, the first step is to subdivide 
cracks into a series of straight crack segments spanning from branch point to tip.  For example, the 
branched crack of Figure 1 is divided into three crack segments, each with its own local coordinate 
system.  Once the opening displacement profile for a single segment is determined, its effects on the full 
stress field can be evaluated separately from the other crack segments.  Superposition of the local 
solutions for all of the respective crack segments yields the full solution to the auxiliary problem. 
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Figure 1: Global and local coordinate systems for a bran
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Dislocation Distributions 
Dislocation distributions are the means of describing the opening displacement profile of a crack segment 
and inducing the prescribed crack face tractions of the auxiliary problem.  A dislocation distribution, 
µη(r), is defined as the derivative of a crack segment’s opening displacement profile, where r is an axis 
coincident with the crack segment.  To determine the stresses induced at a point (x,y) in the material 
caused by all of the crack segments, the individual effects of each must first be determined. 
 
Consider crack segment i acting alone (as though all other crack segments are closed) in an infinite, 
linearly elastic, isotropic plate with local coordinate system (xi, yi) such that the xi-axis lies along the crack 
segment which has length ai.  The distance along the xi-axis is ri and is measured from the origin.  The 
dislocation distributions for a single crack segment are symbolized as µ1i(ri) and µ2i(ri).  The subscripts 1 
and 2 represent the tangential and normal directions respectively.  The stress components caused by this 
individual crack segment at point (x,y) are written in terms of a complex variable formulation as 
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where G is the shear modulus of the material, ν is Poisson’s ratio, and κ is Kosolov’s constant (3-4ν, for 
plane strain and (3-ν)/(1+ν), for plane stress).  These stresses are symbolized by s to indicate that they are 
created by a single crack segment and are oriented in its local coordinate system.  Note that point (x,y) 
must also be converted to the local coordinate system for use in these equations.  The full stress field due 
to all crack segments will be denoted by σ and is determined by summing the contributions from all 
individual crack segments after they are converted to the global coordinate system.  The Z are Cauchy 
singular integrals to be evaluated in closed form in terms of the dislocation distributions and are given as 
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where and η = 1 or 2 referring to the tangential and normal directions respectively.  For the 
cases where the point (x,y) falls along the crack segment, these integrals are evaluated as Cauchy Principal 
Value Integrals.  Solutions to these integrals for given dislocation distributions can be found in [6]. 
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The stress equations are functions of unknown dislocation distributions for the various crack segments.  
These dislocation distributions are approximated by summing together different types of series that each 
captures a fundamental crack or wedge behavior (such as singularities at branch locations and tips).  The 
Cauchy singular integrals are evaluated analytically for each term of these series.  The results from each 
particular term are then multiplied by an unknown weighting coefficient (or degree of freedom). 
Therefore, the stress equations for each crack segment are now captured through simple algebraic 
equations of unknown weighting coefficients. 
 



Satisfying The Traction-Free Condition 
Physical conditions dictate that the crack faces are traction-free in the full problem. To ensure this 
condition, the opening displacement profiles for each crack segment in the auxiliary problem must be 
exactly those caused by the prescribed tractions. Therefore, a series of equations to enforce traction-free 
crack faces in the tangential and normal directions is applied simultaneously at a given set of points along 
each crack segment.   These equations take the form 
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where N is the total number of crack segments.  The left hand side of these equations represents the 
tractions induced at the crack faces by the loading conditions, while the right hand side represents the 
tractions caused by the opening displacements (dislocation distributions) of the crack segments.  Also, nx 
and ny are the X and Y components, respectively, of the normal to the bottom (-) crack faces. The σ∞ are 
the far field stresses applied to the plate in the directions denoted by their subscripts. 
 
Solving for the Unknown Coefficients 
Satisfying the traction-free condition along the crack faces (Eqn. 3) at a suitably chosen set of points 
results in a system of equations.  These equations are linear functions of the unknown weights of each 
term from each series.  To calculate the weights a large matrix must be inverted; therefore, the use of 
efficient and physically realistic series is imperative to reduce the number of degrees of freedom to the 
smallest number possible.  Solving this set of simultaneous equations requires the inversion of a large 
matrix.  Selection of points and number of terms produces an over-determined matrix that is solved by a 
least squares fit.  Once the weighting coefficients have been calculated, stress and displacement fields and 
stress intensity factors can be readily determined [6]. 
 
 
OPENING DISPLACEMENT SERIES 
 
Different types of series (wedge, tip, and polynomial) are used to build the opening displacement profiles 
of the cracks.  Emphasis was placed on creating efficient series to capture all necessary types of physical 
behavior while minimizing the number of degrees of freedom in an analysis.  Wedge series based on 
singular eigenvalues [10-12] calculated at material wedges greater than 180° induced by crack branching 
will not be presented, since the example provided does not include a wedge of this type.  It should also be 
noted that constraint equations are enforced at branch points to eliminate mathematical, but non-physical 
singularities, created by adjoining crack segments [6].  Each term of a series is multiplied by an unknown 
weighting coefficient, c, and each series is used independently in both the tangential and normal modes.  
Furthermore, each type of series must be applied to every crack segment. 
 
Polynonial Series 
Polynomial series, P(r), provide flexibility in manipulating the overall opening displacement shape in 
addition to allowing for translation and rotation at branch locations.  This series is formulated to constrain 
non-physical jump opening displacements and slopes at the tip end of a crack segment and takes the form 
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Tip Series 
Tip series, T(r), incorporate the ½ singularity and higher order behavior at crack tips.  This series is 
developed to avoid non-physical jump opening and slope behavior at branch locations and is written as 
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BRANCHED CRACK EXAMPLES 
 
Rigorous testing for accuracy was performed using results of other researchers [13-16], and agreement 
was achieved in all cases studied [6].  Results available in the literature provided only stress intensity 
factors at crack tips, so this parameter formed the basis of the comparisons.  However, overall results with 
this method demonstrated rapid convergence in terms of weighting coefficients, stress intensity factors, 
and tractions along crack faces as induced by the computed opening displacement profiles. 
  
This method can be applied to branched cracks of any configuration and crack segment lengths.  Cracks 
need not be symmetric nor limited to a certain number of crack tips or growth directions.  Furthermore, 
loading is not restricted by type and can be any combination of shear and normal loading modes.   As an 
example, results from one parameter study of two interacting branched cracks are provided. 
 
For this particular case, two symmetric interacting branched cracks in an infinite plate under unit biaxial 
loading were evaluated.  Branch segments were of unit length while the main crack segment had a length 
of 2.  The branch angle, β, and the separation distance, d, were varied.   Calculated values for KI at the 
inner crack tips are shown in graphical form in Figure 3 as a representative sample of the results.  Note 
that as the distance, d, was increased, the KI values converged to those of a single, isolated, branched 
crack. 
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Figure 2: Two interacting branched cracks under unit biaxial loading 
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Figure 3: Mode I stress intensity factors for varying separation distances and branch configu
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