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ABSTRACT 
 
In this paper, a simple method for topology optimization of linearly elastic continuum structures is presented.  
For prescribed loading and boundary conditions, and subject to a specified amount of structural materia l, the 
optimum structural topology is determined from the condition of maximum integral stiffness, which is 
equivalent to minimum elastic compliance.  The SIMP (Simple Isotropic Material with Penalization) is 
improved in order to save the computation time.  Instead of using isotropic material with SIMP method, the 
material is assumed to be pseudo orthotropic continuum by setting the principal axis of the material to 
principal stress directions and introducing a new penalty function to the young’s modulus at the minor 
principal stress direction.  Numerical examples illustrate that the present method is more efficient than the 
SIMP method. 
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INTRODUCTION 
 
The research in the area of topology optimization is extremely active recent years.  Several topology 
optimization methods have been proposed, and used for the design of practical problem.  However, there still 
exist a number of problems such as checkerboard, mesh-dependence, and local minima being investigated 
currently. 
 
The topology optimization of continuum structures corresponds to finding the connectedness, shape and 
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number of holes such that the objective function is extremized.  Using a density function ρdefined on 
design domain Ω  to describe the material distribution, it can only takes the value 0 (void) or. 1 (solid), i.e. 
 

Ωρ ∈∀= x,or)x( 10                              (1) 
 
It is well known that the 0-1 topology optimization problem lacks solutions in general.  The reason is that 
given one design the introduction of more holes will generally increase the efficiency measure.  A general 
approach to avoid this problem is that relax the 0-1 density constraint to a continuous variable as 
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to achieve an approximate solution, and then use other techniques to approach a black/white design.  
Bendsøe and Kikuchi [1] introduced a periodic microstructure to the material through the use of so-called 
homogenization approach to topology optimization that allows the volume density of material to cover the 
complete range of values from 0 to 1 by changing the size of microstructure.  To use this method, it is 
necessary to determine the effective material characteristic by homogenization, and results are obtained with 
large regions of perforated microstructure or composite materials ( 10 << ρ ).  Another approach that is 

called density function method [2] disregards the details of the microstructure and defines the elasticity tensor 
as a function of density of material directly.  The SIMP (Simple Isotropic Material with Penalization) 
approach [3] is kind of density function method, in which the stiffness tensor of the intermediate density 
material is penalized with an exponential function of density to somehow approach a 0-1 design.  Using the 
SIMP approach the stiffness tensor of an intermediate density material is   
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where 0

ijklC  is the stiffness tensor of material and p is the penalization factor which ensures that the 
continuous design variables are forced towards a black/white solution.  To control the value of p can control 
the speed of convergence and the rate of intermediate density material in the result design.  It is a popular 
method and has also been widely used because of its simplicity. 
 
In this study, the SIMP approach is improved in order to be more efficient in optimization process.  Using the 
concept of Michell truss, we assume material to be a pseudo orthotropic continuum and introduce new 
penalties to the Yang’s modulus.  An example is attached at the end to show the validity of this approach. 
 
 
FORMULATION OF OPTIMIZATION PROBLEM 
 
In this paper, we treat the problem of maximum stiffness of structures with the given amount of material.  
Design for maximum stiffness of statically loaded linearly elastic structures is equivalent to design for 
minimum compliance defined as the work done bye the set of given loads against the displacements at 
equilibrium.  Consider an initial domain Ω  with a boundary Γ  loaded with a static force P.  The 
optimization problem can be formulated as 
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where u is the displacement vector, v is the variation of u, 0M  is the given amount of material.  Using 
Lagrange multiplier method, this optimization problem can be rewritten to a stationary problem of a Lagrange 
functional as 
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Taking the variation of the Lagrange functional, the optimality criterion of this problem can derived as 
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Eqn.7 is an adjoint equation from which the adjoint variable v can be solved. 
 
 
INTRODUCING ORTHOTROPIC MATERIAL PROPERTIES  
 
 
As mentioned above, checkerboard problem is one of the problems occurring frequently in the topology 
optimization process.  As shown in Figure 1, the result design consists of alternating solid and void elements 
so that it is not useful for practical purpose.  To avoid the checkerboard pattern, the use of higher-order finite 
elements has been suggested [4].  However, this approach is the substantial increase in cpu-time because of 
not only the increasing of degrees but also the low convergence speed.  A large penalty parameter p is used 
in general to reduce the cpu-time, but it has the possibility to decrease the performance of the structure.  In 
this research, we try to find a new kind of penalty to the intermediate density material so that the optimization 
process is more efficient in finding the solution and converging to 0-1 material distributions  with less 
performance loss of the result design.  The hint is obtained from the so-called Michell truss [5] that is 
derived by Michell for a minimum weight truss of a plane structure.  As shown in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Checkerboard pattern 

Figure 2: Michell truss 



Figure 2, the Michell truss is an orthogonal net structure, in which each component extends in the direction of 
principal stress and crosses mutually with a right angle.  Although this solution is impractical because it 
derived without the constraint on geometric shape and number of holes, the concept is applied in this paper.  
Instead of using isotropic material, the material is assumed to be pseudo orthotropic continuum and the 
principal axis of the material is set to principal stress directions.  It is reasonable to consider that this 
approach will be efficient in generating the topology.  In order to create pseudo orthotropic material, we 
introduce different penalty functions to the young’s modulus at the major principal stress direction and that at 
the minor principal stress direction as 
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Where 0E  is the true Young’s modulus, 1s  and 2s  are the major principal stress and the minor principal 
stress respectively ( 21 ss ³ ), 1E and 2E  are the Young’s modulus at the directions of 1s  and 2s  
respectively.  Eqn.7 is the same penalty with SIMP method and Eqn.8 is a new penalty.  The reason why 
give 2E  a harder penalty is that 2E  has less effect on the performance of the structure than 1E . 
 
 
NUMERICAL RESULTS 
 
 
In this section, a square plate example is performed in order to investigate the effect of the new penalties 
presented in this paper.  As shown in Figure 3, the plate is computed for maximizing the stiffness, in which 
the left side is fixed and the right side is applied with a load.  It is modeled by 8-node isoperimetric elements 
with the material properties Young’s modulus E=2.10x1011 N/m2 and Poisson’s ratio �� =0.3.  The volume 
constraint is set to 40% of the entire design domain.  The penalty parameter p is raised from 1.0 to 2.0 with 
the step of 0.1 during the optimization process.  Figure 4 shows an optimal result in the case of using 
isotropic material properties and Figure 5 shows an optimal result in the case of using orthotropic material 
properties.  Comparing these two results, the obvious difference can be found.  From Figure4, it is found 
that the clear topology didn’t appear after 150 iterations.  The clear topology appeared after 330 iterations.  
On the other hand, from results of Figure 5, it is found that the clear topology appeared after 150 iterations 
with p=1.4.  It is similar to the result after 330 iterations and it is clear enough to use as a last 
result.  Another fact can be confirmed that results of the two cases are almost the same; there is even no  
 
 
 
 
 
 
 
 
 
 
 
 Figure 3: Design problem and boundary conditions 
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difference of the values of two objective functions.  This fact means that there is almost no extra lo ss of the 
efficiency of last design to use with new penalty functions. 
 
 
CONCLUSION 
 
In this paper, a simple method for topology optimization of linearly elastic continuum structures is presented.  
Instead of using isotropic material with SIMP method, the material is assumed to be pseudo orthotropic 
continuum by setting the principal axis of the material to principal stress directions.  We introduce a new 
penalty function to the young’s modulus at the minor principal stress direction.  Numerical examples 
illustrate that the present method is more efficient than the SIMP method. 
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Figure 4: Results for the use of  
    isotropic material properties 
 

(b) After 150 iterations, p=1.4 

(a) After 30 iterations, p=1.0 

(c) After 330 iterations, p=2.0 

Figure 5: Results for the use of  
  orthotropic material properties 
 

(a) After 30 iterations, p=1.0 

(b) After 150 iterations, p=1.4 

(c) After 330 iterations, p=2.0 


