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ABSTRACT 
 
As is well-known, the experimental fatigue strength of metallic materials tends to decrease with increasing 
specimen size. Several theories on size effect, such as the Weibull statistical theory, have been proposed to 
explain this phenomenon. In the present paper, an attempt to analyse size effect in fatigue is made by 
considering the fractal nature of the reacting cross section of structures, that is, the renormalized fatigue 
strength is assumed to be equal to a force amplitude divided by a surface with a fractal dimension lower 
than 2. Such a dimensional decrement depends on a self-similar weakening of the material ligament, owing 
to the presence of cracks, defects, voids and so on (microscopic level). However, this decrement tends to 
gradually disappear by increasing the structure size (macroscopic level), this phenomenon being defined as 
multifractality. Relevant experimental results are examined in order to assess the reliability of the 
theoretical analysis presented. 
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INTRODUCTION 
 
According to well-known experimental findings, the fatigue strength of a given material is not a constant 
mechanical parameter, but it decreases by increasing the specimen size.  Such a decrease can be dramatic 
for very large structures, by provoking sudden catastrophic failures with possible heavy losses of lives and 
resources involved. Size effect phenomenon was analysed by Griffith [1] for the glass filaments by 
assuming the presence of microcracks whose size is proportional to the diameter of the filament cross 
section, whereas Peterson [2] examined the size effect in the case of brittle fracture produced through 
fatigue loading.  Then Weibull [3] proposed the statistical concept of the weakest link in a chain: by 
increasing the structure volume, the probability of failure increases owing to the higher probability of 
finding a critical microcrack provoking macroscopic fracture. More recently, the size of the most 
dangerous defect has been shown to be proportional to the structure size [4].  From such conclusions, it can 
be derived that the microscopic scale (material microstructure, grain size, microcracks, voids, inclusions, 
etc.) is significantly connected with the macroscopic scale (structure size), that is, the "disorder" of the 
material (heterogeneity and/or micromechanical damage) has to be considered when examining critical 
macroscopic phenomena (like for example fatigue fracture failure of structures). 
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In the present paper, the fractal nature of the material microstructure [5,6] and the renormalization group 
theory [7-9] can be considered to analyse the interactions between the two above levels (micro and macro), 
as has been proposed in Ref.[10].  In other words, the reacting cross section of a given structure shows a 
self-similar weakening due to the material heterogeneity, cracks, defects, etc., and therefore the fractal 
dimension of such a surface can be assumed to be lower than 2 [11,12]. Consequently, the damaged 
ligament of a heterogeneous solid may be modelled through a “lacunar” fractal set, analogous to the 
mathematical middle-third Cantor set, which presents Hausdorff dimension lower than that of the domain 
where it is contained. Then, new mechanical properties can be defined with physical dimensions depending 
on the fractal dimension of the damaged heterogeneous ligament (renormalization procedure), and such 
properties are scale-invariant constants. According to this approach, the renormalized fatigue strength 
could be represented by a force amplitude acting on a surface with a fractal dimension lower than 2, as is 
discussed in the following. 
 
On the other hand, Mandelbrot [13] pointed out a non-uniform (multifractal) scaling of the natural fractals 
(different from the uniform one of the mathematical fractals), i.e. in the physical reality  a transition occurs 
from a fractal (heterogeneous) regime for small structures to a Euclidean (homogeneous) one for structures 
large enough with respect to a characteristic microstructural size. In other words, the effect of the 
microstructural heterogeneity and/or damage (disorder) of a given material on the macroscopic mechanical 
behaviour gradually vanishes by increasing the structure size [14]. 
 
A monofractal scaling law for fatigue limit of metals is herein proposed, and some experimental results 
[15] are analysed to show how to apply the theoretical approach adopted. 
 
 
FRACTAL NATURE OF FATIGUE FAILURE OF STRUCTURES 
 
According to the concepts previously discussed, the reacting cross section of a disordered material is 
herein assumed to present a fractal dimension d−= 2α , with 0 1<≤ d , where the decrement  depends 
on a self-similar microstructural weakening (heterogeneity and/or damage) [10-12], the value of d  being 
higher when such a weakening is more significant.  Let us consider two geometrically similar cylinders (  
and 

d

A
B ), made up of the same material, subjected to cyclic axial loading (Fig.1). On the basis of the 

theoretical approach proposed for static loading [10], the renormalized fatigue strength  (the subscript 
 standing for amplitude) may be assumed as a material constant with physical dimensions given by 

*
aσ

a
[ ] [ ] dL −2F ,  and the following expression can be written : 
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Figure 1:  Geometrically similar cylinders under cyclic axial loading 
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where  and  are the axial force amplitudes (acting on the two cylinders, respectively), which 
provoke fatigue fracture failure. 

AaF , BaF ,

 
The apparent fatigue strengths for such bodies are equal to : 
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Therefore, recalling eqns (1) and (2), equation (3) becomes : 
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and in a logarithmic form : 
  ( )ABAaBa DDd lnlnln ,, −= σσ        (4b) 

 
By assuming 1=AD  and , where  is a generic value of the bar diameter, the last two 
expressions can be written in a more general form : 

DD B = D

           (5a) ( ) d
aa D −= 1,σσ

  Ddaa lnlnln 1, −= σσ         (5b) 

where the latter equation represents a straight line with slope equal to d−  in the diagram shown in Fig.2, 

1,aσ  being the fatigue strength for a cylinder with 1== ADD . 
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In the case of afa σσ = , where afσ  is the fatigue limit, equations (5) become : 

           (6a) ( ) d
afaf D −= 1,σσ

  Ddafaf lnlnln 1, −= σσ         (6b) 

with 1,afσ  equal to the fatigue limit for 1== ADD . Note that, through a reasoning similar to that 
described above, equations analogous to those for push-pull loading (eqns (1) to (6)) can be obtained in the 
case of rotary bending. 
 
 
ANALYSIS OF SOME EXPERIMENTAL RESULTS 
 
Now some experimental results are examined to show how to apply the above equations. As is well-
known, several aspects (material properties, manufacturing process, specimen shape, testing conditions) 
play a role in determining the amount of fatigue limit decrease by increasing the structural size, but the 
analysis of the specific influence of each aspect is beyond the scope of the present paper.  
 
Hatanaka et al. [15] performed fatigue tests on smooth specimens made up of two different materials : a 
cast steel (JIS SCMn 2A) originally including many defects (comparatively disordered material), and a 
forged steel (JIS SF 50) with a quite homogeneous microstructure (comparatively ordered material).  The 
mechanical properties of these two types of steel are shown in Table 1. 
 
 

TABLE 1 - Mechanical properties of two steels tested by Hatanaka et al. [15] 
 

 
Material Yield stress 

(MPa) 

Ultimate tensile 

strength  (MPa) 

Elongation 

(%) 

SCMn 2A 325 576 18.2 

SF 50 283 484 39.1 

 
Cylindrical smooth specimens with diameter  equal to 8, 20, 30 and 40 mm, respectively, were 
employed.  The S-N curves for the two steels tested under rotating bending are shown in Ref.[15]. Note 
that, for both materials, the fatigue strength decreases by increasing the specimen size.  In particular, the 
amount of decrease in the value of fatigue limit 

D

afσ  by increasing  from 8 to 40 mm is equal to about 
24% for SCMn 2A steel and about 13% for SF 50 steel. 

D

 
If experimental results of afσ  against  reported in Ref.[15] are plotted in a bilogarithmic diagram 
(Fig.3), two straight lines can be determined through the least squares method : the straight line slope, 

D
d−  

(see eqn(6b)), for the cast steel is equal to – 0.162, whereas that for the forged steel (dashed line) is equal 
to – 0.085.  Consequently, the reacting cross section presents a fractal dimension d−= 2α  equal to 1.838 
and 1.915, respectively: in other words, the ligament for an ordered material is more similar to a two-
dimensional Euclidean surface than that for a disorder material.  Such a conclusion is consistent with the 
concepts discussed in the previous section.  Furthermore 1,ln afσ  , defined in eqn(6b), is equal to 5.76647 

for SCMn 2A steel and 5.63681 for SF 50 steel, that is, 1,afσ  is equal to 319.4 MPa  and  280.6 MPa, 
respectively. 
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Figure 3:  Monofractal scaling law for fatigue limit afσ  of two steels tested by Hatanaka et al. [15] 
 
 
Note that the experimental points in Fig.3 are not perfectly aligned (the correlation coefficient is equal to 
0.906 for the cast steel and 0.937 for the forged steel), which could mean that the monofractal scaling of 

afσ  is valid only in a narrow size range where the fractal dimension α  is about constant.  In other words, 

a non-uniform (multifractal) scaling of afσ  may be assumed, with a gradual decrease of  as the scale  
increases. As a matter of fact, the material microstructure is independent of the macroscopic scale of the 
specimens tested; consequently, the influence of the microstructural disorder (heterogeneity and/or 
damage) on fatigue behaviour may progressively diminish by increasing the specimen size, and may 
become practically negligible for cylinder sizes large enough with respect to a characteristic 
microstructural size. 

d D

 
 

CONCLUSIONS 
 
Experimental tensile strength and fatigue strength decrease by increasing the specimen size, and this 
decrease is more pronounced for comparatively heterogeneous and/or damaged materials, i.e. the so-called 
“disordered” materials. 
 
The problem of size effect in fatigue has been herein analysed through fractal geometry concepts, by 
assuming a self-similar weakening of the reacting cross section of structures, due to the material disorder 
(microscopic level).  A monofractal scaling law for fatigue limit afσ  has been proposed. The fatigue 
strength decrease may gradually tend to disappear by increasing the structure size  (macroscopic level) 
with respect to a characteristic microstructural size. 

D

 
Experimental fatigue data related to two different steels have been examined to discuss the theoretical 
approach adopted. Such an approach seems to be a possible alternative method to analyse the size effect 
problem in fatigue fracture failure of structures. 
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