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ABSTRACT

Analysisof inverseproblemshasalreadybeenperformedin variousfields. In many cases,assumptionsfor
thesolution is needed.It seemsthattheproblemswhichneedany assumptionscauseacontradictionin the
analysis.

On theotherhand,we have developedthediscreteintegral method(DIM)utilizing thedeltafunction. We
havenoticedthattheDIM is oneof theexcellentschemesto solve theinverseproblemsinceit cansolve it
withoutany assumptions. In thispaper, weattemptto applytheDIM to one-dimensional inverseproblems.
Namely, we developeda schemefor identifying the external load distribution on a homogeneousbeam
withoutany assumption for thesolution.

Throughseveralexamples,it is provedthatthepresentschemegivesaccurateandnaturalsolutions.
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INTRODUCTION

In the analysisof InverseProblem[1,2],many points of issuehave beenleft yet even if problemswith
ill-conditions areexcluded. Oneof themis concerningpresumption.This meansthat, it is necessaryto
give assumption information suchastheshape,thenumber, its sizeor position andsoon, of theobjectto
be treated,assupplementaryinformationfor identification. It is difficult to solve it asan inverseproblem
if several assumptions concerningpriori informationarenot defined,for the subjectto be estimatedis a
unknown existence. In addition, the unnaturalequationsmustbe usedwhen the numberof parameters
is different from that of simultaneous equationswhich works asa decidingcondition. Thesecausethe
difficulty to establishageneralschemein theanalysisof inverseproblems.For thesereasons,it is important
to establishaschemefor inverseproblemswithoutany assumptionsof thesolution.

In this study, thefirst time,thediscreteintegral methodutilizing thedeltafunctionis developedandwe try
to apply this methodasoneof schemesto the analysisof inverseproblemby boundaryelementmethod
(BEM). It is shown thattheidentificationis performednaturallywithoutany assumptionsof thesolution by



usingthepresentscheme.In this report,thepresentschemeis appliedto onedimensionalinverseproblem,
namely, theidentificationof externalloaddistribution in bendingproblemsof ahomogeneousbeam.

1. INSTITUTION OF ONE DIMENSIONAL INVERSE PROBLEM

1.1 Integral equationof bendingproblemof beambyBEM
It is convenientfor theproblemto identify externalloaddistribution in bendingproblemsof a beamto use
theformulation of BEM. For ahomogeneousbeamunderanexternalloadof ������� asshown in Figure1, the
equationof thedeflection	 canbewrittenas[3]

	
�����������	������������ �!���"�#�$�%	��'&)(*�� + (* �������'	��,���.-/��102� (1)

Where 3 is thelengthof thebeam,� is theobservationpoint, � is theslope,� is thebendingmomentand� is theshareforce,andparameterspointedwith asterisk* arekernelfunctions. The inverseproblemin
thisreportis to identify theexternalloaddistributionappliedonbeam(i.e., �4�5��� in theintegral termof right
sideof Eqn.1) from the information of thedeflection 	
���� which is monitoredat observation point � as
well astheinformationof boundaryconditionsat bothendsof thebeam.
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Figure1: A homogeneousbeamwith externalload �4�5���
1.2 Discreteintegral methodutilizing thedeltafunction
Herewe will explain thediscreteintegralmethodutilizing thedeltafunction,which formsthebasisof this
study. Thefollowing integration is considered.+<;=�> �����'?!�5���'0�� (2)

Here, ?!����� is a known function, > ����� is a functionwhich is treatedasthetargetof interest(for example,
in this case,it is the function of externalload distribution), andit canbe known or unknown value. The
function > �5��� is usuallyapproximatedusingthequadraticelement.Insteadof this,weapproximateit using
Dirac’s deltafunction: @BA

> �5����� CD EGF �#H
EJI �5�K�L� E � (3)

where

@ A
is the M�� th Nabla differential operator, H

E
is the strengthof the delta function, namely, the

strengthof thevirtual concentratedsource,� E is its appliedpositionand N is thenumberof H
E
.

Further, a function O � definedasthefollowing equationis introduced:@QP O � �R? � ����� (4)



It is supposed that the function O � is obtainedby analyticaloperation.By substituting Eqn.4into Eqn.2,
andby

S
integratingit by part, the Eqn.2canfinally be written asthe following equations.Namely, in the

caseof MT�VU , +<;=$> �5���'?!�����10��W� +<;=�> �5���
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andin thecaseof MT�RY , it becomes+<;=�> �����'?!�5���'0��Z� +<;=�> �����
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We found that the given integrationis expressedby the quantitiesat the both endsof the beamandthe
strengthof thedeltafunction H

E
, sothedomainintegraloperationis neverneeded.

Thisschemeis regardedasanew discreteintegralmethod,andwill beintroducedinto theequationof beam
which is expressedby Eqn.1.

1.3 Constructionof simultaneousequationsfor inverseproblem
Following equationsareobtainedwhenthe Eqn.6is substituted into the secondterm on the right sideof
Eqn.1with > �����^�_������� and ?!�����^�V	 � �5�.-/�� :	
�`�a���X�G�b	��%�c�$�d���e���R�d�c�$�%	f�1&g(*
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In Eqn.7,theequationof BEM which givesthedeflectionis expressedusingthestrengthof deltafunctionH
E

(unknown quantity). In addition to H
E
, therearestill the boundaryvaluesof physical quantities(the 4

parametersof 	j-k�l-/�_-k� exist ateachendof thebeam,sothetotalamountis 8, and4 of themaregivenby
boundaryconditions).Besides,theloaddistribution � andits differentialquantityat bothendsof thebeam
remainasunknown in theequations.To sumup,thetotalamountof theunknown valuesis N$�Wm . To match
with thenumberof theunknowns, N equationsareobtainedby monitoring theinformationof deflectionat
the N pointswherethedeltafunctionis applied.Further, 4 fundamentalequations[4] to solve thebending
problemof beamasa directproblemareused.For therest4 equations,theself-interpolatedequationof �

�4�`�a�^�X�n� @po � � @ � o �'&g(*�� CD EGF �#H
E o ���� E -/��q-��MZ�VU�� (8)

and its differential form are available. Therefore,the simultaneousequations,eachhasa naturalform,
canbeconstructedwith thenecessarynumber. Whenthesimultaneousequationsaresolved, H

E
andeach

unknown quantityatbothendscanbecalculated,then,wecancalculatetheexternalloaddistribution atany
pointof thebeamusingEqn.8directlybecausethereis nounknown valueontheright sideof theequation.

2. EXAMPLES

In this section,analysisexamplesfor modelcalculationareinstituted,andtheabove identificationmethod
of external load distribution will be verified. The examplesarecalculatedandshowed by the following
rulesunlessaspecialdescriptionis made:

1. Theunits: thedimensionlessquantitiesareconsideredto fit any systemof units.Thelengthof beam3 is 10.



2. Theboundarycondition(B.C.): asimplysupportedbeamis treated.

3. The numberof points N wherethe delta function is appliedis 49 and they are arrangedat even
intervalsexceptthebothends.

4. Theorder M of Nabla-operator:theequationof MT��U is used.

5. In all graphs,thehorizontalaxisis in thelengthdirectionof beam( � axis),theverticalaxisis thevalue
of load. And, “Exact” meansexact distribution, “Present”meanspresentdistribution of identified
results.Therigidity r�s is 100in all examples.

Otherboundaryconditionandthecasefor aNabla-operatorof order Mt�_Y will bediscussedat thelast.

2.1 Identifying a concentratedload
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Figure2: Identificationof a concentratedload

First, theproblemof aconcentratedloadis treated.Thevalueof theconcentratedloadis 1 andit is applied
at the point of ��� � . The result is shown in Figure 2. From this figure, it is seenthat a sharppeak
appearsat the point of ����� andlarge overshoots exist nearthe peak. From this scene,we canensure
thata concentratedloadexiststhere.However, thepeakvaluediffersvery muchfrom theexactvalueof 1.
This occursbecausetheobtainedvalueof � is expressedasa distributedload. Therefore,it is necessaryto
take attentionthat �4�`�a� mustbeintegratedto identify themagnitudeof theconcentratedload. (This means
that it is essentially impossible to distinguisha concentratedload from a distributedonein a very narrow
rangeby only onceidentificationusingthis analysisscheme.But in mostcases,theintegrationwill not be
neededbecausepracticallymostloadshave a definitedistributedrangeandthereforecanberegardedasa
distributedone.However, it will notbementionedfurther.) Fromtheabove,thevalueof concentratedload
(which maybe the resultantforce of distributedload in a very narrow range)is decidedby the following
equationin thisanalysisscheme: �

� +$;= �4�5���'0�� (9)

Thisequationcanbeintegratedeasilyby Eqn.8,andtheconcreteexpression canbeobtained.

Table1: Calculatedloadmagnitude(Exactis 1)
Integrationrange Integratedvalue��� mB���t�_� � U 1.1423����� ���t�_� � Y 0.9511��� Y]���t�_� ��� 1.0205����� ������� ����� 0.9999



Themagnitude of theconcentratedloadwhich wascalculatedby Eqn.9for resultof Figure2 is shown in
Table1. Thoughtheerror is a litt le large in therangedisturbedby overshoots,yet it is goodenoughasa
estimatedvalue. And, if we integrateit throughout the whole range,the valueshouldbecome1 because
of theequilibrium condition of the force,asshown in theTable1, so theextremelyaccuratevaluecanbe
obtained.

2.2 Identifying distributedloadand its re-identifying

(a) Primary identification
�

(b) Secondary identification
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Figure3: Refinedidentificationof a localizedquadraticdistributedload

Theleft graphof Figure3 is theidentifiedresultin thecasethatastep-shapeddistributedloadwith strength
of 30 exists in the rangeof YL�
��� �

. Similar to the previousexample,thoughratherlarge overshoots
occurnear �j��Y and �j� �

wherethevaluechangesabruptly, it is a very goodidentificationasa whole.
It seemsthat to avoid this overshootis impossible,yet theerrorcanberestrainedto a smallenoughrange
to meetwith the neededaccuracy in practicaluse. For example,we canre-arrangethe sourcepoint over
a narrower region wherewe suppose the load probablyexist from the first calculation,or usethe larger
numberof sourcepoint. Theright graphof Figure3 is theresultwhenwe use99pointsourceovera range
of �Q���t�_� . Comparedto theleft one,theoutlookof thestepis identifiedmoreclearlyandtheovershoots
nearthestepbecomessmaller, too.

Figure4 is theresultfor two distributedloads,namely, astep-shapedlinearlydistributedloadexpressedby�4�5���������W�f�,� is appliedin the rangeof ��������� , anda step-shapedconstantdistributedload with
themagnitudeof 2 is appliedin

� �
�<�
� . This shows thateachdistribution canbe identifiedwith the
accuracy asgoodasthatin thecasewheneachdistribution is appliedindividually.

As shown in theabove, it is proved that the loadcanbe identifiedaccuratelyby themethodof this study
withoutany assumptionssuchasthoseof thekind of load,thenumberof loadandappliedposition.
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Figure4: Identificationof two distributedloads



2.3 Influenceof ordern of Nabla-operator andotherboundaryconditions
All of theabove resultsareobtainedusingequationof M¨�XU . If it is donewith theequationof Mj��Y , the
accuracy will bebetter. However, thereis not somuchdifferenceasa wholebecausetheovershootneara
stepcannotbeeliminate andtheaccuracy in thecaseof Mt�RU is sufficientenough.

In all mentionedexamples,thesimplesupportboundaryconditionis used.Figure5 is a problemwhich a
beamhasa roller at �Z� �

andbefixedat �W��3 , theloaddistribution is shown in thefigure.Thebehavior
of the resultsis almostassameasin the (a) of Figure3. So we cansaythat the differencein boundary
conditionhasno influenceto thenew method.
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Figure5: Analysismodelwith anotherboundarycondition

CONCLUSIONS

In this paper, the discreteintegral methodutilizing the deltafunction wasapplied,anda new schemeto
analyzethe inverseproblemusingthis methodwasdemonstrated.In this report, identificationproblem
of externalloaddistribution on homogeneousbeamwastreatedasanexampleof onedimensional inverse
problem. By this analysisscheme,external load distribution can be identified accuratelyand naturally
withoutany assumptionssuchasthoseof thekindof load,thenumberof load,andappliedposition. Further,
the schemeis applicableto variousboundaryconditions. However, when the load to be identified is a
concentratedoneor hasa steepchange,theovershootappears,andtheerrorsapt to becomelarger round
theedgingpoint. It is possible to considera practicalschemesuchasa re-identificationusingtheresultof
thefirst identificationto improvetheaccuracy. Thisanalysisschemecanbeexpandedeasilyto acontinuous
beam.

The casesthat ideal condition of identification canbe instituted aretreatedin this paper. However, even
for thoseproblemswith morecomplicatedconditions, or of ill-conditions appearedin practicalcase,we
considerthateffectiveschemescanbedevelopedbasedon theconsiderationof thisanalysisscheme.
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