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ABSTRACT  

This paper summarizes the recent formulation by Wang and Chau [1] on a new boundary element method 
(BEM) in terms of complex variables for plane elastic bodies containing cracks, holes and rigid inclusions 
subjected to mixed displacement/ traction boundary conditions. A complex boundary function H(t), which 
is a linear combination of the boundary traction and boundary displacement density, is introduced. The 
present Boundary Integral Formulation can be related directly to Muskhelishvili’s formalism. Singular 
interpolation functions of order 2/1−r  (where r is the distance measured from the crack tip) are introduced 
such that singular integrand involved at the element level can be integrated analytically. The interaction 
between a rigid circular inclusion and a crack is investigated in details. Our results for the stress intensity 
factor are comparable with those given by Erdogan and Gupta [2] and Gharpuray et al. [3] for a crack 
emanating from a stiff inclusion, and with those by Erdogan et al. [4] for a crack in the neighborhood of a 
stiff inclusion. 
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INTRODUCTION 
 
In recent years, boundary element method (BEM) has widely been applied in solving linear elastic problems 
and fracture mechanics problems, and has been developed into a powerful numerical technique.  In the 
traditional approach, boundary integral equations are derived by from the Somigliana’s identity (e.g. Rizzo 
[5]; Cruse [6]; Lachat and Watson [7]; Brebbia [8]). The application of BEM has been focused mainly on 
traction boundary value problems (BVPs), and there is relatively few BEM studies on solving mixed BVPs, 
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to which displacements and tractions may be prescribed on disjoint portions or on the same segment of 
boundary but along different directions (e.g. Bonnet [9]; Gaul and Schanz [10]).  Note, however, that the 
so-called "mixed BVPs" are sometimes simply referred as BVPs regardless of whether displacement or 
traction is prescribed on the boundary.  A typical example of the mixed BVPs is the interaction between 
rigid circular inclusions and cracks in plane elastic bodies. There is no BEM that has been proposed in the 
literature for such problems. Therefore, Wang and Chau [1] recently proposed a robust BEM to solve this 
problem.  This conference paper will present and summarize the main findings by Wang and Chau [1].  For 
the case of interactions between non-rigid circular inclusions and cracks, we refer to the works of Wang et 
al. [11], Erdogan et al. [4], Erdogan and Gupta [3], Isida and Noguchi [12], and Gharpuray et el. [3].   
 
The present formulation closely resembles the Muskhelishvili [13-14] formalism. For mixed BVPs 
formulation in complex variables, we refer to the works by Sherman [15-18] and Lu [19]. These 
formulations, however, do not originate from the Somigliana’s identity and, thus, their relationship to the 
classical BIE formulation is unclear.   But this missing link between these formulations and the usual BEM 
was considered by Wang and Chau [1]. 
 
The main obecjtive of the present paper is to summarize the main findings by Wang and Chau [1].  The new 
BIE formulation originates from the Somigliana’s identity and involves singular integrals of Cauchy type. The 
present BIE formulation is of the same mathematical form as that derived by Chau and Wang [20]. Thus, 
the numerical implementation proposed by Wang and Chau [21] will be adopted here for our BEM 
formulation. One main advantage of the present "complex" variable formulation over the traditional "real" 
variable formulations (e.g. Ghosh et al. [22]; Bonnet [23]; Frangi and Novati [24]) is that the kernal 
functions involved in the boundary integral equations are much simpler and, as shown by Wang and Chau 
[21], they can be dealt with analytically. 
 
 
BOUNDARY INTEGRAL FORMULATION IN COMPLEX VARIABLE 
 
By consider a two-dimensional linear isotropic elastic body containing m holes and n cracks of arbitrary 
shape under plane condition (see Figure 1), Chau and Wang [20] derived the following boundary integral 
formulation for stresses and displacements in terms of a complex unknown function H(t):    
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Before we continue to consider the boundary values of our complex functions, it is useful to note from (8) 
that q(t) can be expressed in terms of H(t) and  w(t) as 
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Figure 1: A sketch for an infinite elastic body � containing n cracks �j (j = 1,...,n) and m holes Si (i=1,..., 

m) subjected to far field stressesσ1
∞ , σ2

∞   and σ12
∞ . 

 
In obtaining the above formula, we have let the outer boundary tends to infinity and the components of 
stress at infinity are given as σ1

∞ , σ2
∞  and σ12

∞ . This formulation bears a close resemblance with 
Muskhelishvili’s formalism (1975).  In these formulas, S  denotes the union of the holes S1 , S2  , ... , Sm , 
C G= +∞2 1ε κ/ ( )  with ε∞  being the rotation at infinity, and the outer boundary S0  , and Γ    the union 
of the cracks Γ1  , Γ2  , ... , Γn  .  The shear modulus and Poisson’s ratio are denoted by G and � 
respectively.  The plane parameter � equals 3�4� for plane strain or (3��)/(1+�) for plane stress.  The 
angle between the tangent at t on S+� and the global coordinate axis ox1 is denoted by �(t).  And �ij and ui 

(i,j =1,2) are the components of stress and displacement in the Cartesian coordinate system ox1x2 , 
respectively. �n and �ns respectively are the normal and shear stresses on the boundary. The superscripts 
“+” and “�” denote the upper and lower crack faces respectively. The complex integration constants � and 
�� relate only to rigid displacements. 
        
 It is obvious that the only unknown function in the boundary integral formulation for �(t), �(t), �(t) and �(t) 
is H(t). Therefore, only one variable is needed in this complex formulation and this is one of the main 
advantage of using the present complex formulation.  
 
 
MIXED BOUNDARY INTEGRAL EQUATIONS 
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The stresses and displacements shown above satisfy automatically the equilibrium equations and the 
displacement-strain relations. In addition, they must also satisfy the boundary conditions, which will lead to 
the boundary integral equations for the unknown boundary complex function H(t).  For infinite plane elastic 
bodies containing cracks and holes shown in Figure 1, Wang and Chau [1] obtained the following BIEs for 
mixed BVPs  
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and f(t0) and v(t0) are given BY Wang and Chau [1]. In deriving these BIEs, we have used the Plemelj 
formulas (Muskhelishvili [13-14]; England [25]) and the following formulas of h z2 ( )  (Wang and Chau [1]): 
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COMPATIBILITY CONDITION 
 
In the case of multi-connected region, the unknown boundary function H(t) for infinite bodies must satisfy 
the following compatibility conditions (Chau and Wang [20]): 
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The mixed BIEs (10-11) must be solved in conjunction with the compatibility conditions (15-16), either 
analytically or numerically by using BEM similar to those discussed by Wang and Chau [21]. Once the 
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boundary unknown H(t) is obtained, the complex functions �(z), �(z), �(z) and �(z) can be determined. 
Subsequently, the stress and displacement components can be calculated. 
 
 
NUMERICAL IMPLEMENTATION 
 
The boundaries of any elastic body containing cracks and holes, either traction or displacement boundary, 
are discretized into a number of linear elements. Each element Le is then mapped onto the interval �1 � � � 
1.  Linear shape functions are adopted for both complex variable t and the complex boundary function H(t) 
on the non-singular crack elements. For crack tips, a square-root singularity is assumed (Wang and Chau 
[1]). In the case that the complex boundary function H(t) on the hole’s boundary, an additional constant is 
introduced for each hole such that the compatibility can be satisfied.  
  
Once the solutions for the nodal unknowns are obtained by numerical calculations, the stress intensity 
factors can be determined from the following equations (Wang and Chau [21]): 
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where aj  and bj  are two tips of the crack �j . 
 

 
Figure 2: A crack of length c emanating from the interface of a circular rigid inclusion and an elastic matrix 

at the point measuring � from the x-axis, and inclining at � under tension �. The mode I stress intensity 
factor is given for the case of �=0.25, �=� and c=0.1a (after Wang and Chau [21]) 

 
 

NUMERICAL RESULTS AND CONCLUSION 
 
Consider the case that a crack is emanating from a rigid inclusion (Fig. 2), the mode I crack tip stress 
intensity factor has been calculated by Wang and Chau [1]. Figure 2 plots the normalized mode I stress 
intensity factors for �=� and c=0.1a.   Wang and Chau [1] also show that the present results are 
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comparable to Gharpuray et al. [3] when the inclusion is relatively rigid.  Thus, the validity of the present 
BEM is demonstrated.  
 
In this paper, the new BEM formulation by Wang and Chau [1] is presented.  Although only the results for 
radial crack is presented here, the present BEM has also been applied to consider the interaction between 
a rigid circular inclusion and a crack, either an edge crack emanating from the interface or an internal crack 
in the elastic matrix (Wang and Chau [1]).  For the case of rigid inclusion, Wang and Chau [1] has shown 
that our solutions are comparable to those by Erdogan et al. [4], Erdogan and Gupta [2], Isida and 
Noguchi [12], and Gharpuray et al. [3]. 
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