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Abstract

Analytical and experimental considerations on the initia-

¢ion aud propagation of internal fracture in a solid are carried

{a) The initiation of internal fracture in the vicinity
- ¢l s point as a8 vesult of converging tensile pulges is ana-

A reasonable estimate of the reflected strain energy

size of fracture of the foci of a prolate spheroid is ob-
_iained,

(b} Experimental success in reflecting and focusing sharp
cuises and thus fracturing the neighborhood of the focus in a
piolate spheroid is observed. The size of the internal frac-
iure ranging from a pinpoint to a volume having more than 3 mm
<t diameter has been obtained,

{¢) The propagation of a single crack in an infinite solid
in analyzed, Viscoelastic behavior of the medium is considered
wmnd the time-dependent fracture information is given,
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(a) Initiation of an Internal Fracture

Introduction
=dkifguction

g The ipitiation of an internal fracture at a point in a me-
dium as a result of converging tensile pulses can be obtaivwd(
using the geometry of a prolate spheroid, A prolate Sphe;;;é
has the property that every ray emerging from one of its faci
will converge to the other focus after tra ii i 8
tength and reflecting from the free ﬂzr;:zzgli;?g"pa}hs v
e h : ree s ce, wough the detona-
tion of some high explosive material at e focus, the creared
sharp compressive pulses will travel radially to the free sué«
face and be reflected toward the other {ocus as relatively fase
converging tensile pulses; aod as slower shear waves whjcg con-
verge along the spheroidal axig, Fracture around the second
focus will occur when the m magnitude of the tensile pulses be-
comes sufficiently large for certain lengths of time. The exact
analysis of the state of stress in the neighborhood of the | ‘
second focug ig extremely difficult if not impossible, but an
approximate consideration is attempted, , -
Pormulation

The general equation of motion in terms of displacement

U is
Ll

rf . 2
iy r o S -

) ,(._f’e.’) V Vé{ e [f[,{ y7 L{ = c “ (1)
where /2 is mass density of the medium, ) | ar e the elas-
tic constants, V' is the del operator and 7~ the Laplacian
operator,

Introducing

’?

U=V + vag
- (2)

into (1), the following wave equations will be obtained.

c, Vg - &
iz =9 (3)
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tor a problem involving a boundary of spheroidal surface
- satural choice of coordinate systems is the spheroidal co-
dinate. Let & ,7n, @ be the spheroidal coordinates.
¢1, b are the lengths of the major and minor axes respec~
wly and 2 . the interfocal distance of the prolate

onevold, then a b fand [1]

"*/ ’EFE/" api.?._._a
(5 s )’57 e

o ihe case of axial symmetry (5) reduces to

i - ?F ? 2?F
T R ] o
and {4) reduces to
2
C22 Vaﬁ s ?&:O
Gl )
cause ﬁ? & &5 , where 4 is the unit vector in the
dirvection of increasing ¢ .
The boundary conditions are such that over the spheroidal
surtace both the normal and tangential stress components vanish,
»se conditions can be expressed in terms of the functions &
F . Let'h;Z%;/r, then for vanishing normal stresses

k b >3 f(/~fz) BB (her) DD
g% g3 b6 2 e

aze bk fh (/r+/)f7 a®_ 2P
(@2 £3n2) b (1-n%) 2 (55113

_(kenaf 2T )8 (h-pafy Fog
at f%7 g atfprE " 6m7) e

%o
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and for vanishing shear stresses

> B f (-7 FF _ b e

'Bé’a)z b ’872 f'(/_?z)’/z "agl
L 21 2%, fa 2, fby 2F
01/“7L oF a§f472?7 (b€/390_7vﬁ‘37

o fag-4” b ppar
b(ax f*n*) 2% b(/~7")'/2 b’

€)]

These equations (8) and (9) must be satisfied on the surface of
the spheroid E = a/_/

In the neighborhood of the focus where detonation occurs
the material is subjected to very large compressive stresses.

As a result the equations of linear elasticity may not be applied.

This situation can be avoided by choosing a sphere of radius &
such that outside this sphere the compressive stresses are small
enough to justify the use of the linear elasticity equations.
Consequently, the inner boundary conditions over the spherical
surface E+7= E/f are describable by the following two ad-
ditional equations. For normal stresses:

Fe (&, 7t)~—'l }[ /233‘-_; (/r/)
25> §‘-/ ’57 5'27
L k(7Y 128y ( n22, (-1 27
e fz*/’/= e

(-)(E2pY P& (3L ) (10)
where /(%) is the function describing the normal pressure on the
sphere §+1 = €/f as a function of time. For shear stresses:

_ k=020 2F |, k1)E7 y] - Prt)
7
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£} f“({%“ /) (i 7) [ ( ).)/2_ 2
Ftrin) ’aga,? £%/
Exy “a,l?+ 2p 2% 28 ?i
b?z RET " E2 7;«?§ g2z ?7
S (e EIL et ) 7 27
5372 £ (5")%(/“7&)’/2 ’37
-7t _£% ) 3 27
7 ST e Rk 3E

.{,(3{:2 ~ ’?21 )gp‘} = 0
(§20)%2(-0y" (20"~
(11)
The wave equations (3), (7) and the boundary conditions (8),
01, {10), (11) completely specify the problem., Although the
squations can be easily separated into ordinary differen-
i equations whose solutions are spheroidal wave functions of
s onder [2] , it is extremely difficult to determine the
ution satisfying all the boundary conditions. Therefore,
srate of stress at a point in the spheroid at any instant
be determined by routine analytical methods.

2

Hethod of Analysis

However, we shall investigate only the propagation of the
{voident dilatation waves and their rveflection as well as their
vergence, For convenience, assuming that the compressional
sves as diverging from a sphere of radius € to the entire space
the wave propagation is radially symmetric. Using spherical co-
spdinates (1) reduces to

2

Bzu_;___z__?u__zu: Y/

ar? roor re o2
! (12)

whiere {4 is the radial displacement.
The initial condition is
U = ?U:O for =0 r2 e

L a3)
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The boundary conditions are

P(L) for p= ¢

G l5t) = (3+2/u)§7f’.4 EA.;@’_:

For simplicity, assume that /({)is of the form

P(t) = A @XP(-Bt)

where A and 3 are suitable constants.

be put respectively as follows:

0 for 00

Then, using the Laplace
transform and the initial condition (13), (12), and (14) can
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Ae?
dur i PE
T B

5(1+ «—MC'QO

(e o
<

3 V3 ct-r
(14) +(1-8L)e cos L (1+=2=)
-4 (1+ EL?:!:} . Ct-t
.;“‘,mm/.[?m_?f_,. B(r—zeﬂe “ & 5;n§3_(/+ *“‘g‘“}
5 15 c,
¢3
(21)
(15) How let us consider the reflection of waves., The reflection

tarmonic plane waves on the stress-free infipite plane is

shiem which has a simple solution., It is a familiar result
«i when a dilatation wave is incident to a free plane surface
i dilstation and shear waves are reflected, If the free sur-

‘& 1w smooth and curved, we may divide the surface into in-

2 e —
4G 2 dJa 2 sy =
drr rodr T T 2.) « =g .
r G (16) ‘sitesimal area elements and regard each surface element as a
()i 2 di o A/(S+5) yr=€ ane surface, The law of reflection of plane waves on a plane
* /ll)_a_/_;: + 24 -%— = _ sudary should then be valid for each surface element, The in-
wher o = oo (17) « dent spherical waves may also be regarded as plane waves when
e
=0 , - source of the wave is sufficiently far away (as compared
uwrs) = / ulr ) e 5T ¢ with the dimension of the surface element) from the infinitesi-
Solvi 0 (18) ~ il surface element, If the source is not far removed as in
olving (16) and substituting j_;s?to (17) we obtain tie case in this problem, the spherical wave can be expanded
E(I‘S) o A€3(/+~%s~ e < (r-e) ‘nig plane waves using double Fourier integrals. Then the as-
S) =
sption made in this method is quite reasonable [3] .
14+ E£S L A+2U g5 )2 2
ﬂ[+ <, + 4/14 ("E}‘) J(S*fB)/" (19) Let A, A,, A, denote respectively the displacement am-
The singularities are at siitude of the incident dilatation wave, that of the reflected
B “itatation wave, and that of the reflected shear wave., If & is
5 = - ihe angle between the normal of the free surface and the direc-
- a5, e o .
= P [(A«leu)l« 4/(3 /24 tion of the incident wave or that of the reflected wave, and
Nt 2 i% the angle between the normal of the free surface and the wave
v
a (20) sormal of the reflected shear wave, then the following equations

Inversion can be performed by calculating residues.
fic case when Poisson's ratio is /3, A= 2/( we can eventually

obtain the inversion for 7 =20

1276

For a speci- st be satisfied,

Sin o

sin /5

/
= {A+2,u)i: )
M < )

2(A, —A,) cascr.s/n/e ~- Ay cos28 =0 (23)
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A, + A o ; — A, sirng sin2a =
(A, 2) CS?A&/HO( h /d’ 23 =0 (24)

These relationships are derived for plane harmonic waves of any
frequency; hence, they may be applied to plane waves which are
arbitrary functions of time. The displacement amplitude of an
incident harmonic dilatation wave of frequency ¢« can be ex-
pressed as

P = A snw(t- Xcosgwww
! (25)

where X , are local perpendicular coordinates with X -axis
parallel to the outward normal at point of reflection on the
spheroidal surface. The amplitude of the reflected dilatation

waves can be expressed as

B = A s w(t _xcaso - ysino )
’ & (26)

For an arbitrary frequency « the only difference between the
functional forms of # and ¢J_ is due to the difference be-
tween the directions of the wave normals, We conclude that when
the dilatationm wave ¢/(/;Z) characterized by (21) is incident
on a surface element with an incident angle o , the reflected
dilatation wave in the neighborhood of the surface element is
described by

3 _g(t+L1E2a
{/2(’/qu): A e ) (3(20—/0)__/ e ( <y )

4/4(20—,9)‘[/—_%1,5 «8e)7)' &

+[(_§£"_C"__‘)+/) cos.g(c,z:;g—za )

1

L f1- F9-2P, 28(a-¢) _ BP ) in3 (¢t +r-2a
s (1~ T 2D L) sin (atpoza,
_dsa o tP
e 27 o Se (27)
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# 14 the distance between the surface element and the
-:s'i} focus The function F(“):Az/f‘\/can be calculated

fvom (23) and (24) with A= 24 Thus, we obtain

.

‘ Va 5 2
.2
8ino¢ sin 20 (4 - sine) = 2(2-sin%)
)’/1-1-2(2-5/}1"5()’*

Sino sin 2e (4 =S
(28)

Taking spherical coordinates (p, 8,9 ) with the.ongmh
.¢ the second focus and the Z -axis coinciding the axis of the
void. then for points on the spheroidal surface the follow-
coid,

ing equation must be satisfied

2f _ _2a-p
sin 2ot siné
o = L sin'(2f_ sine)

? 2a-f (29)
hstituting (29) in (27) we can obtain an expressien for Uz{/i"i’,t)
Using this radial displacement function, the state of stress in
the Q;aighborhood of the second focus may be studied. That is,
with 1, (p, 6, 7 ) given over the free surface
sith (/,

a—fcose
= - e
/0 b+ :éi S~ 8 (30)

it 1s required to find the radial and tangential displacements
i (p,0,¢ ) and Ug (P ,6, L) for small o , or for points
i“i'f,, ;;) in the neighborhood of the second focus.
It should be noted that the function ¢ (p
spplicable to points on the spheroidal surface. Away from the
:‘ig%ézﬁ%{“()idal surface the interaction among waves from surface ele-
a;a‘«m::f; will change the wave shape. Formula (27), with the
left-hand side replaced by ¢, (A, 8, ?), does not represent the
ﬁ-:;":vr;s:z;;ation of a wave., However, the function h(p,8, ) as
?@ iim(ébéwdependent boundary condition actually determines the

, 8, ) is only

.tate of stress near the second focus. .
i+ is seen that the exact determination of the stress fie
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is.extremely difficult, However, some rough idea could be ob
tained among several relevant quantities, bz
to know the strain energy,
contributes to the fracture
Wy
before
that

It is of some interest
transmitted to the second focus, which
around the second focus. If 4/ and
are the strain energies corresponding to dilatational wave
and after reflection respectively, then it can be shown )

W (%_f - [Fm)]

w, i
(31)
The rate of transmission of ene
is obtained by integrating (1) as

»%.g‘/_r j@[@“‘/’(} V-,élg+/ug-\7g]-g s

¥gy across any closed surface

(32)
where 71 is the outward drawn normal [4]

A = zvu

the rate of energy transmission across the spherical

surface /"= &
2% - 8rwe® 2
= & UEt)| 5> akt) weed).
T3 ~ 27 St e:[ = ]
(33)
Similarly, the rate of energy transmission to the second focug

at the instant 7. (24. €)/e,

is obtained by evaluating (32)
over the spheroidal surface as

”Biu;(ivﬂj%%ﬂ%J
2

7
= 7T ef//:_fki 2 E%Z SU
/( s 2Z ( GV'“+ € )

2

) str @

;~(3§ sinl_ 2fsiny
P T~fcosy
14 _g:f: sy
(34)
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eation of (34) over a period of time, say between ﬁ and él
4 the total M, (%, 7 Jtransmitted during this period. Since
paths of the dilatational waves between two focl are equal,
ond forus will be under uniform hydrostatic tension, We
wn assume that a small neighborbood near the second focus
o under hydrostatic tension. Let & be the radius of
iwe and £ the amount of strain energy per unit volume
waterial under fracture, then

e 3
;'A/"Z.::: ; 77& o

i
{

s
d = (3 » |

7 TE (3%

£ is not known, and ith,is the maximum value of

Y, £+ 28p), Tro and &

7 is the minimum value
Selow which no fracture will ocecuy, then, for the case A = ﬁfx

dv oz ;32<$J

211
£

Y3

Wiy ~ 14, :

75 pE

Wy 2 WY,

(38)
farion {36) gives a theoretical estimate on the fracture for
tven P and M.
It is interesting to note that for constant Wpythe
This relation can

Fig 1 gives the relationship between iy, - %
the value of # the swaller is J ,
s be used in the estimation of hydrostatic pressure # for

ure if J is measured. The theoretical value of X, is
ostimated here since a portion of the energy must be spent

io inducing fracture near the first focus., If (36) is used in
aluating 4 it can be shown that ﬁ> will be undevestimated,
sther matter to be noticed is that before {(36) can be evaluated,

This by no means
that A should
This would

the magnitude A in (15) must be determined.

However, it is reasonable to assume

P oaagy,

the same for the same amount of explosive used.
previde a way to study and compare with experimental results,
fome axperimental data are shown in the following section.
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(b) Fracture under a State of Radial Tension

The strength and fracture of a solid under a state of tri-
axial tension has long been of interest to many research workers
[5] . This isg particularly true in finding practical methods
for obtaining experimental data., One method of using reflected
intense mechanical waves and focusing them to a point in pro-
late spheroid is found to be quite successful under suitable con-
ditions. By exploding lead azide at one focus of a prolate
spheroid made of polystyrene or polymethyl methacrylate materialg
extremely high compressional waves can be created. These waves
radiate out from the vicinity of the focal point and converge
to the second focus after being reflected from the free spheroid-
al surface. As the reflected waves are tensile in nature, frac-
ture occurs when they converge to one point for a sufficient
length of time, Figs 2 and 3 illustrate fractured specimens.

Fig 4 shows some experimental data of explosives used and cor-
responding sizes of fractures created, This compares fairly well
with theoretical results if proportional reduction of the strain
energy from explosive charges is assumed,

By comparison of the theoretical and experimental results,
it appears that Yy

b = (ﬁz&‘_ N - o )
77 §3
which is constant ag 6%47~P%)/§3is found to be invariant
for almost any point on the experimental curve, If the absolute
magnitude of the strain energy can be determined, then the in-
ternal stress 7 required for fracture under a state of hydro-
static tension will be obtained,

It might also be of importance to mention that the incep-
tion of a crack at the second focus of the prolate spheroid is
essentially resulted by a hydrostatic tension. However, the
state of stress will not be hydrostatic when the volume of
fracture sphere becomes appreciable. This is so not only be-
cause of the geometry of the prolate spheroid but also the in-
complete reflection of the pulses from the spheroidal surface.
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i} Three-Dimensional Crack Propagation in a Transversely

fsotropic Viscoelastic Medium,

furing the course of the investigation of crack forma-
i on ss described in the previous sections the medium was as-
to be elastic and only the initiation of a crack was con-
tidered, It is also of interest to investigate the crack pro-
don in transversely isotropic viscoelastic solids as many

£ 4
saterials are as a result of homogeneous deformation especially

14 the neighborhood of a crack,

In the following sections a remotely related simple pro-
biem concerning the effects of a finite penny-shaped crack on
fw stress and displacement fields in an infinite transversely
stropic viscoelastic medium is investigated. Relations be-
n the pressure distribution and the opening of the crack
#re derived, Also, the most likely shape of the opened-up
¢rack is analyzed. Knowing the shape, we obtain the expansion
2i a4 crack as a result of viscoelastic behavior of the medium
snder load., Numerical results are given for a physically re-
alistic material for which relaxation data are based on cer-

tain known results for oriented materials.

Preliminary Background Considerations |
v The effect of a crack on the state of stress and displace-

went can be investigated as the solution of a mixed boundary

i-infini fum, As a preliminary,
value problem for a semi~infinite medium ap

iet us assume that the medium is transversely isotropic, visco-

i i axis in
elastic and has properties symmetrical about the Xj

an arbitrary coordinate system. Consider the case that the

crack propagation is not significantly affected by inertia
forces of the medium, and in the absence of body forces, the

equations of motion become

?@(x,t) & |
0 (37)
19283
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1=
1% reduce the convolution integral relations (38) to linear a
s u relations. Limiting ourselves to homogeneous transverse
it &2 At R . ;

stropic media symmetrical about X; -axis, {38) through the
{40) reduces to

where CJZ}(’X} Z) is a symmetric stress temsor. All indicial no-
tations range over integers 1,2,3 and summation over repeated
indices is implied. Also x

nates X, , X, G .

The constitutive equations for an ani

stands for the triplet of coordi-

sotropic viscoelastic
medium can in general be expressed for infinitesimally

small 1ris) = SCu6s) Eu(xs) + SCL,(8)8,,0x5) + S Ci3(s) E,(xS)
deformations [6] in the following form 7 (xs) = SC )8 (xs) + SC,8E,(x5)+ S E,a(s) E33(x5)
£
Lixs) = 8 Cy(s) &y (x3) + ST 30 &3 (x8) + 5 Cyy(s) €5,(x3)
z ; ~ -
§ ) 298Gy / 0 (xs) = 25 C,(s) &, (x5)
ﬁ:(?{, x’f} g / Cy:j\”tf (x, Zm”.’) z’ﬁf(ﬁﬁyz)ﬁ 7 :Nv(xl;j g 23
\J g k =y S— PUSESY e
¢ 7 Yilxs) = 28 G © &3(%s)
‘ = - 5 (41)
= s[C,ts)-E,0] g,x,s)
a vhere mMy,n=1.--6 are used, replacing Cy/v( {s) for
where C/ik¢ (x,7)are anisotropic fumctions of relaxation moduli.

ig assumed that the body is in its undeformed sta

convenience and simplicity.
e i . i Y Aof
Lave ang il T

when Z <o , and Cgsin?) o
To iillu

iustrate the method of ana

wally small stra

Using cylindrical coordinates (r, ©,z) with 2 along the
#s ~axig, it has been shown that (results to be published) all

the equations (37), (38), (39), (41) are satisfied for a sym-
_setrical problem if

iz we

@

lys

Vil may
be employed. 1In this case small straing

and dig-
placemants i {x )

A {x T} will be related 915¢,f<}}.1<7"‘-?§ o 2 ?g((f]i,»?)
. = (rz.s) + =2 2 O ¢(s)—K 12"
yr(,;z’S) g/ Xk b=t 5 2
2 & (x £l Byt L N.fig:_/,\: £/ {/Jg (r zs) = O
7 2% T ) ]
= iy — Y rzs)
7 = el rzs)+ 7 2 M (s) 22K EY
(39) U,(rz,s)= g/ ﬁ(s)!gr(, £ kw//,‘, 52
- (42)
Use of the Laplace transform B¢5) of a function HBE)
defined (7] by
where %(C Z,3) satisfies
" — s
7Y, ;2 3¢ 2%
—k s) Z=h_ - o
- £+ el 55 =
£ e ) 55 2 r 43)
Pls) = / Bt) e oz
and
a

(40) /‘a}?,r{r;z,s; - ’BZS[’T Zs)
02 - or
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2 P i

Nelrzs) |, Xlrzs) 7o é!?("fzs)
AR ¥

A": /1 i
(44)

In (42) and (43) 77 (s) O(/V(S) ﬁ(SJ /Uk@} and mk(s) are
defined as in the followmg equations

— e w2 - wzel -
CuS) Caq T+ [ Tls) ~Cg(s) = T (I, 24/ D¢s) + C G T y(9)=0

3 [*33(3)- Ci (s;xykrs)][c,,zs) 0.6)~C, ()] - cmo s
0'(;,{{5)::

- SR e e T . -
LEC@M )+ 2 Cpyts)][C 1)~ T, to) 6]~ CaL2E (s s) - m@@y

Zc,, ) %(s) c (s_/[mzs)mk(s} cm;’ (:)]wm.u/;; (s)[cmm ©+2C 6]

B(s)=
7/ A _ R . _ N
Cl)L2E(9) 7és) - c{ajgfmg«,{érsﬂ &ww (s; 7[<: 50~ a%,)??cs)]
A6 = 357;{5) & (5) (o Swmrrmalion)
/
where Ces) = Ef,ﬁ(&} + &, )
5‘?&( s = 9~ G 65)
Cés) (45)

Substituting (42) into (41) we get

o =
p— oF e = ” — - - >
29 = 2 {SCuwlg e+l - 58 7o | __gllc“_.__%ﬂ

2 — _ - — 2 _ o 27
-2 SEO-taelTe B2, 3 2 I CB(s)/\Ak{\S)M
ot > = 2zt

v oy e 25 ~ -~ X
- ST SIS Y}éSfi}%_k;; &) sLG-Caes)] EAD) T'?;"“ Z'S]j
P z
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" J,(rzs
RATE 22 [s AL +Ps)] - 3 ST o] ﬂ’%‘*’)‘

e g s{ Gyes)- C!L“’«U )(k((Z,S} + 2 2 {SC‘BCSH‘( (\SJM
L - ‘ (s}-f. 6 o) 2RlEY
- sE,l9) O(kqucs) Bfgrxjé :| ) 4 SLG = 12 % () -

2 I = g1 OGS
(n23) = E;, [5G Ads + el sTa ] =

2 S
_ _ o e e DY rnzy)
B %u [§ Cysl (] = s Cppl®) 4 ) 7\‘((5);} M’Skz.fm

P ~P.(rzs)
T B 1+ & ok
Pz = kz.,, s G [+ Juirps] 2K

2 >
_ _ _ -2 J (rzS)
+ 2 Sk:;; S G [ A (s + !L&k(sﬂ W

o

it

:;‘E;.s (r 25)

G,lnzs) =0

(46)

“ith these definitions, any radially symetriglal boundary value

sveshlem can be solved once proper functions _@;(CZIS) are
yeund., It can be shown that (43) is satisfied by

L
. % _—2 g o 'A2
Jazs) = [r'+ Boz] " (k=y2) whereys)= [
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Then successive integration with respect to Z produces a series
of harmonic functions, usually known as first, second. ., . . . ,
logarithmic potentials [8] . If EIEADEE is replaced by

[ 9 ()2 +2F] where £ is a real variable and lg:ﬁ
the new function ;?];:_(’fi,‘s) = {F:‘+[_(§k(\3)z ‘*3'5.72}—5

50 created is also harmonic because derivatives with respect to
Z‘)‘k(\yjz are th_g Same as those with respect to Z)"k(s)z-u'.g P

The function jg;(c 2.s) 1is complex and its real and imaginary
parts are also harmonic., A judicious choice of one of these
logarithmic potentials will enable us to solve the problems in
which the proper boundary conditions are stipulated [9] ‘
Formulation of the Problem

With this preliminary information, the problem of a penny
shaped crack in an infinite medium perpendicular to Z axis
can be reduced to that of a half-space with the boundary con-
ditions

on Z =0 plane

cgz("/jqé):_— 5 ‘P(’f;é) 0Ly e R
Z/E("fa,?f) = 0 R<p<oo
Gra(r0t) = 0 0=r<oo

(47)
where is the radius of the ecrack, If the crack is expand-
ing, then H= R{E). However, we will firat solve the prob-
of an unexpanding crack and then extend the rasults to the

case of an expanding crack,

With a little examination it follows that the proper funce

(4 Z8) in this case, i.e,, » - constant, are

L
q

P 5

” 7%}

i 7 ; 3 % i b i ¥ a
Hrzs) Lt | Y (5iE A LE A L7 H L (5 -+ 0 2

i
L.

) H
A -

Generalizing to take into account the variation on the crack,
we choose

] 5
3]{(’»;2}@) = f?e/é*k(g,s) /’7[2‘1{5)2#’5—&[,*‘@ (5k(aji+.(’§')i"]3/—j o
’ (48)
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» ,
2 - ~ A Z
X (nzs) = Re/ 77;(3:31 {@1z4i8 - ri (D2 #4g)7 ) dx
i o

(49)

Shere /é);‘ (gls) are arbitrary functions to be determined from
{he boundary conditions. Substituting (48) into (47) through the
use of (46) we get

" ks dg Py
=% - "3 (50)
o (rigy% Als)
/R
Z h(gs) dr =o (51)
and Zz(rjs) = - I+ % )45 Z,[r,s) (52)
‘ 1+ S, (50 +B,(5)
shere
Als) = s es) [5'}3(5) //a"‘,[s)—fﬂ(sj) - Ty ’;'?7(52] £53)

141 0Bls) Puls) Bl Fiel Gyt }
{ PEASH A W) SRl Ty 7s)

It is seen that (50) is a singular integral ;a;quaticn of
the Abel type. Multiply both sides by "(/02' r*)”’* and in-
tegrate with respect to r over (o,p) , and eventually we

san obtain

’7 P ) dr
/4 hgs)dr = - _/ rpins)
= D/ S .Tws}/ (Pry) s

]

Uifferentiating with respect to Ve

77,(/,6‘):~~3_- d 1 /“/J(f,c?)lq//"
T Als) " de (P2 r*) 2
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Now /’},//,«g_gj has to satisfy (51) in order that the displace-
ment boundary condition is satisfied, It can be shown that all

the boundary conditions are satisfied if we modify the above equa=

tion by adding a Dirac Delta function as

Aps) = - FA@ T /[;ﬁ(:;)l/zdr__ ¢ §(R-p) 5
where
c P rpirsi or =R
& %
and / d(R-p) dp =

Substituting (54) into (52), (48) and (49) 752(5{,67 5 j}f;(fj?}\?)
and »ffr(r Zs) may be computed. Both @(,»Egj s X lrzs)
go to zero as (‘2 ’-)/" o koo L

On the = - o plane

— -
{ _ 2 21/1
4 (ros) l N (ES) g*ig r) dy  osr=pm

=0 Rer<oo
Y5 P B
%Z,lco,sj _ & 05) Pl ES) g 0t re<
z A (’f‘ﬂ-_}'f)’/l s r< R
R __ —
- / Wi (s) P (ES)
° (rz g-z) 2. frerses
¥ R
res) = - [_Ales) v
& o a:(er (Pi-gl/’ ’ o’g’ dL i
-
N Aecgs) (FExy”? dz R < r<es

/

& Z),\,(sj r (55)

e
Siwie
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substituting (55) into (46) we get, on plane

,{?_,. B ok I/Z
iUy(r0s) = §(S)/ h(gs) é’“w dy  0=r<R
=

- o R < r<oo
zg(’fQ = - prs) pers R
~ o
_ higs) o
= - AE W,/j R <Er<ed
o (r*g¥y
2 //”;; {(rs) Va2
Giros = - 2 [-TKEL gy ag osrsR
k=) o W00
& h ( 5) /2 -
= MZ M (ST ((“ § a’g R s <oo
ks[ /A}A_(&}f’ (56)
where
— M I~ & 650 46 (.
Bls) = /,(s) - Pl ) 3,(5)
1+ 2 (5)+Bols)
(57)

iimilarly, the rest of the quantities can be computed. From the
vesults obtained so far it is apparent that the displacement

{r05) on the crack surface is related to the applied load-

ing through (158D In other words, the displacement of the
crack surface must be consistent with the applied loading. Then
73(,;5) required for producing a desir-

id

the applied load function
able displacement D;(Cofg)can be easily computed, To obtain
such a relation, differentiate the first of (56) with respect to

r~ , then
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- R _ -
r daglroy / Eh(Es)dz
B(s) olr e {g’;,wlj’/z

This is also a singular integral equation which may be solved
for ?i(;;;) s finally as

75,(/*6}: -2 [/ o R dlpos) P de
4 sl LR LA = e F(R-
TEs) LT 4’“,. 07’0 Prry ¢ r‘)]
(58)
where = o)
¢ = __f__f—i_/ Jalgos) Plp o
o dr o ERPETL/Z)
r /i Prr?)
Substitute (58) into (50), then
s r
Pls= 220 / 3 N Ty
3 %2y ENE
8(s) 4, S(rig)” O/§§ g//o (/_gj/z(59>

This equation is equivalent to the first of (56). A similar
relatloq~between the crack opening Z;(CQS)and the total
load P¢s) can be obtained ag

_ ~
Pls) = 2/7/ /f/‘E(,;U o

- R r
- LAY [ o/ T s [T oo
& 5 g(r3§2}’/'2 Jr - c://o (p2 {2/'/2

- (60)
The relation expressed in (59) is important because it gives a

surface loading distribution for any prescribed crack opening

o

Sneddon [10] has computed similar results for a parabolic open-
ing of the crack in an isotropic elastic medium. Use of relations
{59) and (60) together with certain energy considerations will
enable us to predict the most likely shape of the opened-up

crack, at least for the elastic transversely isotropic medium

19209
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o ohrain vesults in the real time domain inversion of the above
{ons must be performed. A mere examination of the expres-
,i‘g_;}; ,/3;(5) , etc, and JB(s) and /T(\S) will indicate
(st an exact inversion of these expressions in many cases may

Yo extremely difficult, However, the limiting solutions at

cand ¢ = co can be easily obtained. To extend the solu-
‘.4 for an entire time scale, approximate inversion methods can
‘s employed and the solution expressed as the sum of expounential

‘ctions. This is expounded in a following section regarding a
sing crack in a viscoelastic medium.
sant Likely Shape of the Opened-Up Crack

 {n this section alone assume that the medium is transversely

{sstropic as before but elastic. Then the quantities without
.verhead bars denote the corresponding quantities for the elas-
¢ie medium, Let us assume that

u;(’)fa):. bo + br + bz,'“2+-_ c e = erN
(61)
where b,  are constants to be determined, /V is the number
+» be chosen depending upon the accuracy required. The above

quation is quite general since any smooth function can be ex-

sressed in this form., Continuity of Uy(ro) requires that

Ly (F,0) = 459+1>,R+b1R;+———+bNRN:0

) (62)
swhilch expresses b, in terms of other b, and R ., TFor the
slastic medium /X is determined from the Griffith's criterion
st fracture [11]

S~ ) =0

where AV is free energy of an elastic solid and {/ the surface
snergy. Then

~
W o= /277/‘,0(0‘ (4’2(/,”0) or

N N
= -84 5 3 nh b, G, (R)

B Nz=g M=y
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where
~ r R,
Gon®) = [ P »E/-.«/mf_.i_“fﬁ___
° e 50*35‘)”" dg T (’/olw g;)Vz
(63)
and
U= 277 B%r
(64)

where 7 is the surface tension of the material, It can then
be stipulated that the critical values of A and é% are those
which minimize the energy balance, The mipimum is given by

(V-

= O
K2t
v-v) L,

b,

(65)
which give rise to equations

At e
B Azp M=y dﬁj

and

N
2 b, Gipm(R) =0 n=i a2 ..y

m=| P
(66)

These are (/V-+/) equations for A and N number of i%

the most likely shape of the open-up crack and the correspond-

ing consistent pressure distribution. By increasing the number

N (61) will approach the exact displacement; however, the
computations become increasingly difficult. 1t may be reason-
able to expect that the most likely shape of the open-up crack
in a viscoelastic medium will have a somewhat similar form.

1294

i+ an increasing function. P
sslution to monotone increasing function

.57, only
in the time domain as

unknowns
and can be solved, Substituting them in (59) and (61) we obtain
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“rack in Viscoelastic Medium

Mo we wili consider the same problem defined by (47) when
.ﬁﬁ where /(¢)is a function of time 7 . We can also
f;M;ﬁ the same problem by prescribing a displacement, con-
st with the loading fD[ﬁZJ , on the crack surface. The
sutage in this case is that we can satisfy the boundary con-

: ivnig move easily. Then on Z=0 plane

OEE(GDJﬁ)r_:O 0&r<oo
Us(rio L) = W(rt) vere R(t)
= 0 R(t)<r<oco

(67)

We have shown in the early formulation of the problem that

- ¢ =« constant the crack problem as formulated above can be

wodl, We can use the technique which has been used by Lee
Radok [12] and Graham [13} to solve this problem with

0 : ‘ !
“undary conditions given in (67) in the case only when Rt

If we restrict the validity of the
i.e. RE)< R(L)

then(59) can be written for the present case

(-2 2) = 2. AL2) T[Rt),r]
8L pioed = —= )
(68)
whare
& RE) y
Rty = 9% J e ) PRde

ps g(ri.§-2)//z a’;‘ g o/;«9 (/o£ gzj’/z
(69)
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and & and A4
to Laplace transfo

rm functions AB(s) and Als) respectively,
In addition, we ca

for  p(r#¢)  where the right-hand side ig known,
we get a consistent Pressure distribut
opening, Also

for  T[R(H r} Similarly, (60) can be modified by in-
tegrating (68) to give a relation

R(t)

P(t) = 21 [ r pirt) o

(70)
where Fa(f}

is the total 1oad on the crack surface,
For simplicity, if we assume that

by + b2
o

{i]

Otr)

have solutiong as

_hz 14
pt)=fe®h 2 o fo o ta2) IR, e

(72)

1296

are differential operators which are similar
0 transform (56) by using the same technique,
In this case

ion for the given crack
s W& can consider (68) as a differential equation
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. bt _ 5L
R R e B 4 e &
f,f?ff/ 47
i al s /8_3'(0:)4- a,%)l[ﬁ’(é/)f] dE (73)
3
s is constant of integration to be evaluated at Z=o,
v can also solve (68) and (70) as

ok

a.t - ot DL
i/ 3{?5;{_]; f'f = Me 4 +E7Z' e e /&+b’%%) P(C‘ZJ dT
3 g D'

. : 74
) it at Y (74)

ik &l _a AR J
5¢ §{&&jw":£iﬂW€ ®+$£e %OI%W ga(é+ﬁﬁ)ﬁ@iht
i

(75)
constant of integration, However, if
;4ﬁn§,4/%%) are higher order differential operators, then
ens of {(72), (73), (74) and {75) will contain more terms
tar to those already obtained, and the computations present
Jifficulties, Equations numbered (72) ~=-- (75) may be used
. svaluating the pressure distribution foft/ in the expand-
ing evack or the crack radius R(Z) at any time 7. From these
ations it is apparent that ~(Z) will depend upon material

M is a

ferties in a complicated manner. It can be shown that the
“its obtained in this section can be reduced easily to those
a0 earlier section, when R(f)= R H(t) where }%/él:{z ;2§3
o, similar vesults can be obtained for isotropic viscoelag-

divm by substituting proper values for H ) Bcs

in terms of A(S) and i?&ﬂ . In this case instead of two
siions ;?(g,asg » we get only one function since"aéx)x i
: . The dependence of spacial coordinates for both iso-

 and transverse media i3 the same, so that many of the

‘lusions in either cases would be expected to be the same.

. the crack is not circular as assumed, the problem becomes
deult but still can be solved., 1In that case the preliminary

ition must be expressed in generalized coordinates, and
proper corresponding results will then be derived in the
e coordinate system,
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Illustrations and Numerical Results

Let us now consider a particular case of a crack on which
a uniform pressure is applied. First, we consider the case
wherein R ()= constant. Then

prt) = H HIt)

(76)
where /7/(?t) is the Heavyside unit step function,
and
Frlrs) = -LB___ [1-R”R 8(R-r)
' 77 Als) *7
an
On the 2Z=-o plane
=y /
az(f;o‘s*) = «,,w (/5’2'-/"2}/2 o2 r=R
775 A(s)
= © Rsr<oo
y&:(’/“OS)-”- % o r=< R
2240 s - s - =
z,.QB[}ﬁfCE__Jiﬁﬁ_ﬂ R<r<eo
roo2RY” (78)

Similarly, other quantities can also be computed. Before we can
obtain any numerical results we must consider a particular ma-
terial and its properties. It may be mentioned that the above
results are true for any general viscoelastic medium. Now let
us consider a medium whose behavior CU’H (t)is representable
by a standard linear solid. The response curve for this model
material is given by the following differential equation

’bO" E[ + E O- _ E ’58 E, E)_

“+ eS = — gt 2 &

2t T, ' 2t N (79)
1208
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“heve £ and &, are elastic constants, 77, 1is the viscosity
_seificient and 7 the relaxation time such that ), = £,7
in general for various C, ikt (t) Elsand 7 s are differ-

snt in diffevent diractmns. For a class of high polymers the
ie properties for a transversely isotropic medium are
sheoretically predicted in [14] Choosing the values for
swwientation we get

L& (e} C (e} (e)
{‘f‘g“g = /.95 C, (:',3 = -{':44 = 0. %50 C,
fe) ) &)
Gy = C, = 0.333Cy

(80)

‘o choice of relaxation times can be based upon the supposition
t viscosity does not vary sigmificantly with orientation,

o1 we gel
g, o= T, = 0513 T
e - 3 A = 22
i r?g‘;v—\?? %3 i],;‘} 2 x.é/(r‘
(81)
Aiso, it is assumed that in (79) £, = - £. This corres-

sonds to having similar springs in the model (Fig., 6). 1t may b«
tioned that the values in (80) are presumably close to the ac:
al physical values. Through the use of (80) and (81) various

Cauantities 55{(.3)» Ar(s) 5 etc. are easily calculated. It

{4 relatively simple to determine large and small time limiting
tehavior of various quantities in (78). Also the results for
.« 7 %o are obtained using only the first approximation.
in Fig. 7 the displacement (/z(r,0,Z)1is drawn against the

#dimensionless radius.
Next we consider the same problem for R = (¢ . If

we assume that wint) in (67) is given as

wirt) = ) [RIt)-r]
(82)
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consistent with the normal loading plnt) = p H{E)
where J{1(Z¢) and R(t} are unknown fu;ctions of time, Also
SL{t)= N, at t=o0 ; then .= 2R ’
2201777

Substitute (82) into (74) and if only the first approximation
is considered then we get

-0 Zz
_§ﬁ)~—z 30.¢ — 292 & S ST

(83)

Now put (82) into (75) and solve for A(t) then

Z 0-3/0
r 0.0982L —0.256L
. . g 7 (1595 - 0595 & 7% ‘r)
(84)

where /7, is the initial radius of the crack. In order to ob-
tagin reasonable results, we must assume K, #0 . Some of these
results are shown in Figures 8 and 9. It can be seen from the
curve in Fig 8 that .2 (¢) assumes a finite limit for Z=o and

Zz00. But A(t¢) in Fig 9 becomes infinite as can be ex~-
pected from the physical reasoning. It is interesting to note
that the crack must propagate away from its center, since the to-
tal load is increasing with time. Another interesting observa-
tion is that R (%) varies approximately linearly with time. This
suggests a relation

dRt) .,
s

(85)

where & is the slope of the curve, and is nearly constant. In

many earlier investigations a constant rate of crack propagation
has often been assumed. Furthermore, there is no difficulty in
obtaining analytical results for cracks of different shapes.

1300

R,

On Internal Fracture of Solids

REFERENCES

. Margenau and G. M, Murphy, The Mathematics of Physics and

Chemistry, 2nd Ed., Van Nostrand (1956).

. M. Morse and H., Feshbach, Methods of Theoretical Physics,

MeGraw-Hil1ll (1953).

,. M, Brekhovskikh, Waves in Layered Media, Russian Transla-

tion, Academic Press (1960).
B. Lindsay, Mechanical Radiation, McGraw-Hill (1960).

.. C. Hsiao, "Internal Fracture under Radial Tensicm,"

Bulletin of Amer, Phys. Soc., March {1964) .

. 4. R, Moghe and C. C. Hsiao, "Stress Anmalysis of an Aniso-

tropic Viscoelastic Hollow Cylinder,” Proc, 4th Interna-
tional Cong. on Rheology, John Wiley (1963).

Churchill, Operational Mathematics, McGraw-Hill, New
vYork (1958).

£. Green, "On Boussinesq's Problem and Penny Shaped Cracks,"
Proc. Camb. Phil. Soc., Vol. 45, p. 251 (1949).

. E. Goodman, "A Method of Complex Potential Functions in

Three-Dimensional Stress Analysis,' Univ., of Minnesota
Tech. Report (1964).

Sneddon, Fourier Transforms, McGraw-Hill, New York (1951).

A. Griffith, Phil, Trans. Roy. Soc., A 221, p. 163 (1921).

H. Lee and J. R. M. Radok, "The Contact Problem for Visco-
elastic Bodies," Jour. Appl. Mech.,p. 438, Sept. 1960.

A. C. Graham, '"The Contact Problem in the Linear Theory
of Viscoelasticity,'" Inter. Jour., of Eng., Sci., Vol. 3,
No. 1, p. 27 (1965).

R. Kao and C. C. Hsiao, "Anisotropy of Oriented Polymers,
Jour, of Appl. Phys., Vol. 35 p. 3127 (1964) .

13m



C.C. Hsiso, S.R. Moghe, G.C. Soong and W.L. Yin On Internal Fracture of Solids

1.4

. //#dg
5 —]
S 10+
[£3]
@ !
2 - ;
5 08 B
° v
[
s / |
° 06 I
=
he
& ‘

0.4 — ,
2]

70 mg 30 ug 25 mg 20 mg 15 mg
0 Ly P P o j ' - 1ead azide used
Wo 02 04 06 08B 10 12 14 16 i8
EEM Fig. 3 Internal Fracture of Polystyrene
Fig. 1 Reflected Strain Epergy vs Size of Fracture ki pe
polymethyl methacrylate polystyrene

>0 40 60 80 100 120 40 160 180 200
Explosive Charge in mg

Fig. & Explosive Charge vs Fracture Size

300 mg lead azide 200 mg 20 mg
Fig. 2 Internal Fracture of Polymeric Solids

109D 1207



TrUz (r,O,f)

P, R

C.C. Hsiao, S.R. Moghe, G.C. Soong and W.L. Yin

—~—

F—Rit)—~
\I\’Tﬁ——-p(f h
f e — T
—~u,(r o,h K
\
’ )
/
Fig, 5  Schematic Diagram of a Crack
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Fig. &€  Schematic Diagram of a Standard Linear Viscoelastic Medium
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tg. & Variatiom of Q(t) in Uz(t,t) = {(t) [:Rz(t)qrz]% Under Uniform Loading

!

4 5 6
2 %) -

7 8 9 10

40

0

1.0

|

fig.

9

16

Propagation of Crack Under Constant Uniform Loading f/'c e

120K

20



