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DI-5 ON FATIGUE FAILURE OF
A MULTIPLE-LOAD-PATH REDUNDANT STRUCTURE

A. M. Freudenthal*
and

M. Shinozuka**
ABSTRACT

Tt is difficult to evaluate the survivorship function of a structure
subject to fatigue consisting of a number of members from those of single
apecimens that can be obtained from experiment.

M attempt is therefore made to establish the upper and lower bounds
of such a survivorship function under the assumption of constant amplitude
fatigue and equal distribution of the load among the existing members, ap-
proximating the real process of the failure by Markovian processes.

A numerical example employing the data of fatigue tests performed on
7075 Aluminum alloy single specimens indicates that the order of magnitude
of the life of a composite structure can be reasonably well predicted by
the bounds established by the present method.

1. Introduction.

It is known that, in general, the observed fatigue life N of engineer-
ing materials shows such a wide scatter, both under constant and random
stress amplitude (for example [1]), that from the reliability aspect it
has to be treated as a random variable.

However, except for the work by Birnbaum and Saunders (2] where the
statistical distributions of the life of multi-membered structures are
derived under an interesting assumption concerning the deterioration of
material and a paper by Heller and Heller (3], based on a linear damage
accumilative rule and the assumption of exponential distribution, the
investigations have so far been limited to the case of single member
structures or single specimens with the emphasis on the interpretation
of the stochastic process in terms of microscopic physical mechanism of
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fatigue and/or phenomenological criteria of fatigue failure, although in
reality most of structures in which fatigue is the critical mode of
failure are multi-membered.

The purpose of this paper is to extend this line of investigation to

the case of multiple-load-path structures consisting of n members (Fig. 1)

of identical material and cross-sectional area A, subject to the cyclic
load F of constant amplitude.

It should be pointed out that the problem is of considerable mathema-
tical interest since the stochastic process associated with a single
specimen is of Markovian type while that associated with a multiple-load-
path structure is non-Markovian. This makes it extremely difficult to
evaluate the survivorship function of a multiple-member structure on the
basis of experimental results on single specimens. The present paper,
however, shows that it is possible to find upper and lower bounds of the
survivorship function of multiple-load-path structures using the result
of experiments on single specimens without making assumptions such as the
one used in (2] or linear damage rule employed in (3].

2. Upper and Lower Bounds.

Consider a structure consisting of n equal members combined in paral-
lel as shown in Fig. 1. Assume for the sake of simplicity that the total
load F is equally distributed among the existing members and that the
failure of the structure is defined as occurring when all n members fail.

Let Pg(N) denote the probability that exactly n-x members still exist

at the Nth 1044 application. If A\yaN denotes the probability of transi-

tionX~X+ 1 in the interval (N, N +aN)
RANTAN) = (1 =20 AN ) B (N + Ax B (N) AN (1)

This is the well-known relation in the pure birth process leading to
the following basic differential equations of Px(N):

dBIN)/N = — A Pe(N) (2)

dBdN)/dN - —K'sz(N) +A)¢-| Pr(N) (3)

(X-l)29"' ,n—\)

ARMNAN = A BN (4)

with the initial conditions
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B0~ , R)=R(0)=~ - - - =R =0 (5)
By definition, the survivorship function of the structure is

LIND= I =RN) (6)

Unfortunately, except for n = 1, Eqs. (2) to (6) canmot be directly
employed in the present problem because \ x depends not only on x and N
but also on when the previous transitions 0-1, 132,..., x-1>x have
taken place (thus the process is non-MarkovianS. When n = 1 or when the
structure consists of a single specimen, the process is Markovian since
Asis a function of N only and the use of Eqs. (2), (4), (5) and (6) witn
n = { produces the exact solution to the problem.

Returning to the general case, since the transition x—x + 1 will
occur when exactly one of the n - x existing members fails, the following
relation is valid

A== (1 = 15)" " = (n=x )% (7)

where %y is the probability of an individual member to fail at the Nth
load application after surviving N - 1 previous applications. The
approximation in Eq. (7) is based on the assumption that /R L&Y

To establish the upper and lower bounds, consider the following two
extreme cases: (a) the first X transitions occur at the first X applica-
tions of the load F, one at each application; and (b) the first transi-

_ tions occur at the lastx applications of F, one at each application.

If 4)(N) and M,(N) denote the failure rates of a single specimen at

the NtR application of F/n and F/ (n-x) respectively, then one can say

from physical reasoning that in case (a)ztxis slightly less than M,(N)
while in case (b)z);‘is slightly larger than,u,(N). In general, zty is
less than that in case (a) and larger than that in case ?b) Hence,

HMoN) < DHN> < /u,m) (8)

Note that,u,(N),/q (N),..y%_1(N) can be observed from experiment on
single specimens subject respectively to the loads F/n, F/ (n—l)...., F.

Hence a lower bound for the survivorship function of a multiple-
load-path structure can be obtained in the form (1 - Pn(N)} with Py(N)
being the solution of Egs. (2) to (5) re lacing y,,by,ux(N whereas an
upper bound can be obtained as {1 - Pn(Nf] from the same equations re-
Placing 72 by sl (N).

1t should be noted that the failure rate £(N) of single specimens
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are related to the survivorship functions Lx(N) associated with the
stress level Sy =F/ {A(N -X)} in the following well-known form

Lx(N)se%P[‘S:Mz(i)dgj (=0 1,27 0=F) (9)

since, as mentioned previously, if the structure consists of a single
member (n = 1), then the process is Markovian and, similar to Egs. (2),
(4) and (6), one obtains

dRMNY/AN = —x(ND R (N (10)
ARMD/N = M (N BN (11)
Ly (N)=I—F(N) (12)

which lead to Eq. (9) under the same initial conditions as in Eq. (5).
Incidentally, it follows from definition and Eq. (7) that

/uo(m—l}oc N)=As (N)

A possible physical interpretation of the failure rate of/lx_(N) is
given by Yokobori (4] from crack nucleation theory.

For the distribution function of fatigue life N at a constant stress
amplitude the third asymptotic distribution of smallest values (5] is
assumed. Hence, the survivorship function L(N) denoting the probability
that the life is larger than N, takes the following form.

LNDHY=eXp [— (‘%/::%;‘)d ] (N2 Ne)  (13)

whereX , V and N, are parameters being functions of stress levels; in
particular Ng denotes the minimum number of stress applications to cause
fatigue failure or the minimum fatigue life.

The application of Eq. (13) to the problem of fatigue has been deve-
loped by Freudenthal and Gumbel ( 6). The result of a set of fatigue
tests performed by Freudenthal, Heller and 0'Leary on 7075 Aluminum
alloy (7} at various stress levels is plotted in Fig. 2 on extremal pro-
bability paper where a straight line can be fitted reasonably well to the
data at each stress level. This implies that Eq. (13) with the minimum
fatigue life Ny = 0 is in fact a reasonable assumption for the survivor-
ship function for the material examined.
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The parameter X is the slope of the straight line based on arithe-
matical scale plotting of the ordinate and logamithmic scale plotting of
the abscissa of the probability paper; it is inversely proportional te
the standard deviation of logioN, while V denotes the characteristic
fatigue 1ife such that L(V) = 1/e or the value of N at which the straight
line intersects with the probability level 1/e.

The parameters & and V are evaluated at each stress level and plotted
in Figs. 3 and 4 respectively where curves are fitted to the observations
by inspection for general trends. Figs. 3 and 4 indicate that X in-
oreases while V decreases with stress level.

Comparing Eq. (9) with Eq. (13) with Ny = O, one obtains

Ok (N O O
N g\/%(\a) v (14)

where of yand Vy are values of X and V associated with stress levels
Sx.

The following numerical example is based on the failure rate of the
form of Eq. (14).

3. Numerical Example.

As a numerical example, a structure consisting of four parallel mem—
bers of 7075 Aluminum alloy as shown in Fig. 1 is considered (n=4). The
applied load F is such that it will produce stress levels Sy = 22.5
ksi, Sp = & 30.0 ksi, 53 =+ 45.0 ksi and S = + 90.0 ksi. Since Se(=2 %0
ksis is larger than the ultimate strength (approximately 82 ksi) of the
material, the failure of the entire structure will immediately follow the
failure of any three of the four members. Therefore, n is equal to 3 in
applying Eqs. (2) - (6).

From Figg. 3 and 4, Ayand Vy are evaluated and listed in Table 1.

For the upper bound L+(N) of L(N), the use of Egs. (2) - (6) 1s made
with the following A (N).

- [} "'
A= NI = KN = 432 N (158)

! —\ ao-|
AN= 3 Mo(NI= A N =3%°a, N

(-]

(15»)
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A= 2= AN 2 e (150)

vhich are obtained from Eq. (7) with 2 replaced by /.l'(N).

The successive integrations of Eqs. (2) - (4) with n = 3 under the
initial condition Eq. (5) produce

N)=—LiPa  __an  ga BN
= Bppep’ ") @BEE""C T Jne
LoBi - BaN%®
+ - -, B2 )
— (B —B2>BemB)
@x‘?\'x/O(o (X=0,1,2) (1)

From Table 1 and Eq. (14), &,= 2.00, ,\f,s 2.54 X 10‘15. ,\/,= 3/4 X A)=
1.91 x 10715 ang 2% =112 A= 1.27 x 10715,

Using these values in Egs. (15), (16) and (17) the upper bound LT(N)
= 1 - Px(N) is found to be

_aia -52x16' 442 : SLINEY
LitNy=3gt ™I N _g gt et | gamniaen (1)
For the lower bound L7(N), use can be made of Eqm. (2) - (6) with
AomAMoCN Y= X o N% (19)
Ay - 3/(,(,0\1)—}\'4 Nl (19v)
1t
o= 2 MalN)= A2 N (19¢)
vhere 7} yare obtained from Eq. (7) with 2% replaced by #4y(N) and
/ [2¢
)\{_(4-:() OCx /VZ z C 1-0)1) 2) (20)
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Although it is feasible to perform integrations of Eqs. (2) - 54;
successively with A yof the form of Eq. (19) and hence evaluate L~ (N
numerically with the aid of a computer, possible propagation of errors
involved as one proceeds from Eq. (2) to Eq.(4) makes the result unreli-
able.

*

Hence, in the present investigation, quantities £(x(N) (X = 0,1,...
n-1) are introduced to satisfy the following relatidns at least for N
less than or equal to some appropriate value N' beyond which the sur-
vivorship function of the structure is expected to be so small that it
is of little practical use:

" oo 5
A= N L™ 5 a0
X=0,1, ---,m~1) (NS N

* *

where Vx will be defined later. If Mx(N) are used in place of ()
in applying Eqs. (2) - (7), the resulting survivorship function is evi-
da'x)ztly a lower bound within the domain of N where Eq.(21) is valid (N<
5

Note that the power of N in the expression of ,L(;(N) is equal to
A1 for all X and this makes it possible to evaluate a lower bound
L'(N) in a closed form.

*
To tind,uz(N) satisfying £q. (21), consider fictious survivorship
functions

L;(N) - @(p[—(—[\i&r)mj ()C=O,1,2,*")Y\"|) (22)

*
where Vy are chosen in such a way that

x
My (N')= N ) (23)
or
Ko-0e 4
*Xo 'ANL X
Vx = EN Va (24)

*
» Then, it can be shown that, the failure rates /ux(N) associated with
Lx (N) are larger than or equal to 2(N) associated with L(N) as long as

N < F' since \
- oo ole, NP*™
/A{QN)-%N""'/VJ "OQ(—K,I‘/) ( V& ) (25)

N 06—
—R) T N
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In particular,
¥ * *_ !
Latd=LotN) | MalNy= potN), A=A (26)

For the present numerical example, N' is chosen to be 5 7 107. This
choice seems appropriate since the lower bound at N =5 g 10’ turns out

very small ,a shown in the followin?. ) The values of Vx wssociated with
24

N' =5 x 10! are computed from Eq. and listed in Table 1.

Hence, for the lower bound L7(N), use is made of Eqs. (2) - (6) with

AotN)=4 o y= AT - 4%"’»@, N (27a)

| Ko -1
ANI=3 L )= XN = 32 NP (21)

D(D NO(O"\

A ()= 2 L (Ny= Do 2= 5 (27e)

* *
where, from Table 1,and Eq. (25), A,=2.00, A , = 2.54 x 10~1° A=
4.58 x 10713 and A 5 = 1.07 x 10,

The successive integrations produce P3(N) of the same form as Eq.
(16) with

B~ X / o (28)

*
Using the values of A ,and ) 4 mentioned above, one can obtain the
lower bound L~(N)

i —[277x A5 2 _MO—IBNZ_
[T(NY=11 005557 270" N_ . 90555 S

-5, 6 N2
+1 o1 ’(lO"Te 5.35x|16 0N

It is noted that, for\,(N) to be less than wnity, N< 9.34 = 10t
However, the term that essentially involvesAo(N), that is, the last
term of the right hand side of Eq. (29) is negligible compared with the
first two. Hence, the lgwer bound given in Eq. (29) is considered
valid for N N' =5 x 10/,

(29)

The upper and lower bounds given respectively in Eqs. (18) and (29)
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are plotted in Fig. 5 indicating that the bounds predict the life of the
structure at least within an order of magnitude.

4. Discussion.

(1) Consider the probability function L(1)(N) of the number of stress
cycles to first failure among initially existing members. Then, it can
be shown that

_|~27xlo-,5N 2
L= e (30)

is a lower bound of the survivorship function L(N) of the entire structure
#ince failure of the first member does not always produce the total
failure of the stfscture. Comparison of Eq. (30) with Eq. (29) indicates
that L~(N) and L (N) are practically identical for the domain of N in
question. This is due to the fact that in the present example the struc-
ture considered consists only of four members and the load redistribution
after the failure of first member drastically increases the stress level
in the remaining members so that the successive failures of the member
leading to the total failure are likely to follow. This however dozs not
seem to be the case when the structure consists of a large number of
members,

(2) n deriving Eqs. (2) - (4), an assumption is made tacitly that
each load application produces failure of no more than one among the exist-
ing members, although in reality a single load application can possibly
cause failure to more than one member if the failure of members is in-
stantaneous so that the successive failures of one member after another
can take place in a finite duration of load application. The error in-
volved in this assumption seems negligible since, if the (k + 1)-th failure
is likely to follow the k-th failure during the application of the N-th
load, meaning that p, , , is very close to unity, then the assumption forces
the (k + 1)-th failure to occur at the (N + 1)=th load application of the
load hence introducing possible error of unity in counting the life of the
structure N>»)1.  As pointed out by Cornell [8], however, when the applied
load is also a random variable, this argument is not quite valid for the
following reason. At the early stage of life, when all the members still
exist and the fatigue damage is not yet appreciable, an unusually large
load (with small frequency of occurrence) is required to cause failure to
one of the members. Once it occurs, however, it will most probably cause
successive failures of the members in a chain reaction, hence destroying
the entire structure. Under the assumption, however, this load is removed
after producing failure to only one member and the following load is most
likely to be much smaller than the preceding one. Hence the chain reac-
tion of failures may not occur and the error involved in such an assumption
may be not only significant but also unconservative.

(3) The fact that ¢ increases with stress level, combined with the
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assumption N, = 0, gives rise to the following difficulty: Considering
two straight lines in Fig. 2 withX =} ando(z()a' 1) corresponding to
stress levels Sy and S (> S1) respectively, these lines must intersect at
some value of N, say Ng, sinceX 1 <A 2. Then, for N{N*, the specimen
subject to Sy has a smaller probability of survival than the specimen
subject to Sp(>S1), which is physically impossible.

The difficulty can be removed by introducing the minimum 1ife N°(>o)
as in {1). In the present paper, however, No is assumed to be zero since
this assumption not only simplifies the analysis but also usually produces
a conservative result.

5. Conclusion.

A method is presented for the estimation of the upper and lower bounds
of the survivorship function of a multi-member structure subject to a
cyclic load of constant amplitude under the assumption of equal load dis-
tribution. A numerical example indicates that the present method seems
to predict the life of the composite structure reasonably well at least
vithin an order of magnitude.
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TABLE I

Values of Parametersd,, Vx and V:(

|

*

Stress Level “x V x Ve
0 225ksi | 2,00 | 5.62x 10" | s5.62 5 107 - v,
1 30.0 ksi 2.70 7.93 x 106 I 3.62 x 106
2 45.0 ksi 4.30 3.10 x 105 l

6.12 x 102 ]

1503




On Fatigue Failure of a Multiple-Load-Path Redundant Structure

A.M. Freudenthal and M. Shinozuka

3IMIONIIS JURPUNDIY YIB-PROT-3TATITIY Y

1

T "313

g
-
:
, - ! . "o
= «
] — > n 5]
aVv [ o ﬁ
3 £ 3 g
. B F 2
e S o
= £ 9 y> s g
= > ~ .W.
s 2 —w &
X 3 a
[sV) (2] P
o e % % %% % s
o
-— A ‘8n|DA 21SLBIoDIDYY . “ .m o
o ]
< =4 m —
o 5 f
2 S N Ram— ]
/ . = H-. II‘ .m
Q
5
S / © ~ = .m
= . &
‘B o o o, B
. & il Q )
I o 3 %
> 1 ]
) @ @ [T}
| 89 o
» m & .
e —N\—t——¢ » »n 0
° £ - o
) & ©
—_ — f—o1Imn <t
= Q ) 0%
\ > -—(N)7
1S) ) o = ~ o e
AoTTy wupumTy S£0, 3O suoriouny drysxoafaang 2 *313
N ‘s8|9£9 o saquny
2 Os 9 2 Pleg 9 ¢ 2 Og 9 ¢ 2 ©ls o L -
2 100°
L ,/ \ z /. 010’
jimN N\ \ , ; %o,
L R e ih X \ \ s
N A 3 ¥ i ooe §
oo Sy g Sy S p—— . g SO B B Yo" W mv—— Ll = T B W A K S g =
4 3 \ X A ] oog” &
S o SSTTT-FEYY R S . W S E—— I S P SN S ——— am lllllll MI!I) o
g 1+ N \ A N 00 o
o F / N /. 008" 3
% ; \. / / \- H
& & . 3 \ ~— 006" *
L o 5
\ | \ \ \ | 5
- 13 i QO T ot =
E 15 005'62\ N 1590065t —— 153 009'28\— 0oF'09t— 184000 89 S
I I N\ 086° ~
?ﬁ 1sd00g'/€
| 066




