DII-4 FRACTURE UNDER BIAXIAL CONDITIONS
IN THE PRESENCE OF A CRACK

S. R. Valluri*
ABSTRACT

The principle of balance of energies at the onset of rapid crack pro-
pagation is used to determine the fracture criterion under uniaxial frac—
ture conditions, The determination of the term for the dissipation of
plastic energy involves using properties of the Stress-strain curve,

The Von Mises condition namely, that the octahedral shear strain remains
the same under both uniaxial and biaxial loading enables one to determine
the biaxial stress-strain curve from the uniaxial Stress-strain curve and
the parameter expressing the degree of biaxiality, The uniaxial Frac-
ture curve as determined by this method gives a good correlation with
test data. The predicted biaxial fracture curve qualitatively behaves
essentially along the lines of observation in the normal engineering range
of stresses., That is, the material behaves as if it were more crack
sensitive in biaxial loading,

INTRODUCTION

.

An important engineering problem in Space technology is that of frac-
ture of pressure vessels which are simultaneously subjected to longitu-
dinal and circumferential stresses. Howsoever carefully the material
is selected and the pressure vessel fabricated, instances are known
where a crack has gone undetected and lead to a subsequent catastrophic
failure, Till recently, much of the attention in fracture has been fo-
cussed on the uniaxial problem; the biaxial problem receiving scant little

in the hands of Irwin (Ref, 1) and his associates and their work forms the
corner stone of development in macroscopic fracture in the United States,
In its original form their method did not receive much experimental sup-
port except in the case of very high strength materials, It appears that
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the reason for this is that they have not taken into consideration the vari-
ations in the plastic energy density but assumed that it could be inferred
from the strain energy release rate. It is proposed in what follows to make
an estimate of the rate of plastic energy dissipation at the onset of rapid
crack growth and use this term in the incremental energy balance equation,
This equation for metallic materials which manifest some ductility prior to
fracture may be stated thus

<SU¢ SUP
W z H’ (1.1)

where the left hand side term represents the incremental changes in the
elastic energy release rate and the right hand side the incremental
energy dissipation in plastic deformation, It is assumed, in line with
current practice, that the surface energy term is small compared with
the plastic energy term and hence can be neglected,

The density of plastic energy dissipated may be estimated in the follow—
ing manner. The stress-strain relation is represented for many
engineering materials to a good approximation by the equation

o S \*
€ = =+ -ebz) (1.2)
where ¢ and 6 are the strain and stress respectively., n is the strain
hardening coefficient and C and 65 are related constants, In particular

it will be noted that since€-gis the plastic strain if 65 is chosen as the
stress at yield point C will have the value 0.2%. The energy dissipated
in plastic deformation in a unit volume is

% GPz n Sp \n+l
J sldeﬁlE =C.1’L+| 63(65) (1-3)

2

where Gp is the stress in the plastic range of the stress-strain curve.
Let us now consider a thin sheet of unit thickness with width 2W having a
central crack of length 29, If such a specimen is subjected to a stress
6~ far away from the crack in a direction perpendicular to the crack,the
elastic solution indicated by Irwin (Ref,1) is applicable, Defining the
zone of plastic deformation as the region in which the maximum principle
stress 6, exceeded the yield point stress O¢p it can be shown that the
polar radius of the contour enclosing the region is given approximately
by

K? N 2
¥is -m—e-{|+5in~g—}

26;, 2 (1.4)
and that
K 2] .. ©
6, = r—Z:T-cosi(l+Sln;_‘) (1.5)
where 2 2w nd _ 22w 2N 1.6)
K":f)'.,.‘? 'tAml—w—G,,,mTa.nl (
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Equation (1.6) is a useful finite width approximation proposed by Irwin
(Ref.1) following Westergaard's analysis of a series of colinear cracks.
The above equations, although held valid for sharp cracks are assumed to
be good approximations for a crack with finite crack tip radius f which
is very small compared to crack length., One significant aspect of crack
growth may now be pointed out. Before the onset of rapid crack growth,
howsoever small, there is in general some slow crack growth, Now
consider an element immediately ahead of the 60° line along which the
elastic stress 6, is a maximum, As the applied stress for away from

the crack gradually increases from 0 value, the stress in this element
also increases and at some stage goes into the plastic region, Since

it is very close to the 60° line, the stress there will be very close to
the plastic stress corresponding to the elastic stress at the same radius
on the 60° line, If at some stage there is a slow crack growth§{ in
this process, the element under consideration may be expected to go
from just ahead of the line to just behind the line where, by definition,
the stress is less than the plastic stress corresponding to 67, Since
the stress in the element is lower now, it is unloading and the unloading
occurs along the elastic line, Therefore in discussing the stability
condition, and evaluating the incremental change in the energy of plastic
deformation, one need only take into account the plastic energy density
changes in a strip of length S4 along the radial line with © = 600,

Consider the element shown in figure 1. The total change in the
incremental plastic energy of dissipation is

_ T oon 6p \N+I )
SUr_q,Jo(,.ﬂ—H '631’('8-;,) Ar sino-SL (1.,7)
K2 . 2
where N o= Tep cos’—g— (1+sin)
Gn 2 2 KK
= 0,54(—6”) (1-A)wtan—= (1.8)

where 65. is the nominal net section stress, The elastic energy release
rate for this case is given by Irwin (Ref.1) as

SUe = _1E£°:12.w- tan%\— -S4 (1.9)

It is therefore clear that the condition for the onset of rapid crack
propagation is

7 n+f 2
6; 26
n Y =P, e 7525
4C 257 Gp Sutefa(o.") dr = = 2w tam =

T 6p W m+1) w / 2 2, A
or J‘ g\;?) dr = 5= E?,,'Ef{ee“'“’\) t‘"T (1.10)

6p the actual stress in the plastic enclave at each point is dependent on
6a. No precise expressions are available which will relate Spto 6.,
However an equation of the type proposed by Hardrath & Ohman (Ref,2)
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and modified to better fit the boundary conditions (Ref.}) may be used as
a good approximation, This gives

sy = G‘ni\-f-(Km—U%} (1.11)

where KTn is the theoretical net section stress concentration factor at

t.he element and ET is the tangent modulus at the element where the stress
is 6. It can be seen that for a sharp crack

6 _ 147

, \
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RS B () tan= (1.12)

where I'is the polar radius of the element from the crack tip, For a
crack with finite tip radius, Isida and Itagaki (Ref.4) give

Krn=1 % (:—/\)[2(72—)%(/+o.s748)\’)+0()\‘)] (1.13)

From the equation for Stress~strain curve it can be seen that

E E 6P n-/
= 4 : T —ts
E; I+ Ccn 67 ( ?'r) (1.14)

Substituting equations (1.11), (1.12) and (1 .13)in (1.10), we obtain

Jﬂ(ﬁ‘- "”[H Lzt ]#Io(r

6yp 1+ c‘n%r (_g_;_ )4\—:

S i) N

3 nc Eé6yp

“m Cr=X2 tanlté\—
(1.15)

This is the basic equation whose solution will vield a pair 63 and A

when the other parameters are given., Because of the implicit nature of
the integral only a graphical solution is possible., This will be discussed
elsewhere and for the present we shall use only an approximation to
equation (1,10), Equation (1,10) is the basic equation proposed here in
the sense that equations (1 .11), (1.12) and (1,13) may be different in
different cases but equation (1,10) remains the same, In a typical case,
by graphical methods one finds that the area represented by the integral
in equation (1 .10) can be estimated to a fair approximation by the term

A [l 5P \" On_y2 217‘_)\,}
(G} oGy ontw tn
the term within the Square brackets giving a straight line approximation
between 6pg and 63pat the crack tip and at the outer radius 7 respectively,
6pp is the plastic Stress at the crack tip, Using this approximate value of
the integral we obtain

1§/ Spo Y 6r 2 2 A n+| [ i o3 A
70{(@;)-* I}xo.ﬂ- 'g;r)(l—-)\) wian = = —. . _L_ g%, tan -
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63 +i
Therefore, E:;—';)n = { qz,q,(%)_ %12} - (1.16)

Since all the terms on the right hand side are known, 6pp the approximate
actual stress at the crack tip is known, We next have to relate 6pg, the
Stress at the crack tip to the nominal net section stress, This is done
through equation (1.11),(1.12) or (1.1 3)and (1.14), Since most cracks
have a finite crack tip radius no matter how small, equation (1,1 3) seems
to be the appropriate relation to use for theoretical net section stress
concentration factor, However, the crack tip radius is not known with
any degree of precision. It is strongly influenced by the plastic defor—
mation, Since the longer the crack length, the smaller the stress
needed to attain the onset of rapid crack propagation, it appears that
the actual crack tip radius should be proportional to some inverse
function of crack length. The simplest assumption one can make is

= fx

Thus for our purposes we have L%
-] 2 i ’
ka1 & (1-A) {25 7 (t+o.'595'2\2)}
= AAU-A)(1to.€96232) (1.17)

The constant A will be treated as an empirical constant to be determined
from test data, We therefore obtain by substitution

5o

G, =
1+ AANI=2(1+0.576X
E 6p \n—/
1+ cn.—=— (SE
Syp 63r)
Since all the terms on the right hand side are known except the constant
A, it can be determined from a test point, In order to illustrate the
form of the curve predicted by the equation, an example will be worked out
for fracture strength of 2024 T3 alloy sheet specimen for which data is
given in NACA 3816 (Ref.5). The equation for the stress strain curve is
found to be 9.€3

(1.18)

6 -3 6
E: -—E-+2XI0 (—6;})

where O3p = 50,000 psi
From equation (1.16)
( 6%o )"“” ntl Eyp

GJP '—’42.7)(7"6" E — | =-llo
6Po
= /.86
6’,)

6p = 73000PSi

Therefore equation (1,18) gives
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78000

6, =
” I+BA(1-A) (1+6.59 €A2)
Expressing 6, non-dimensionally by dividing it by the nominal ultimate
uniaxial tensile strength of 6.t= 73,000, we obtain

Cn - /.08
Sue 14 BA(I=A) (1+0.695A2)

In particular forx = 0,4 g?:l = 0,62 from test data as shown in Fig,2,

Hence B=2,82, With this value of B, the predicted curve and the
corresponding test data are shown in Fig,2, It will be noted that in
the test range, the curve behaves substantially as a straight line with

a slope of a=1/4,73, The curve also defines a crack length of A\y=0,03
below which the crack has no influence on the net section strength of the
material in the sense that the full ultimate tensile strength is developed
on the net section, Defining an effective fracture toughness index as

gu)l a’ we have for this material with this thickness, a fracture tough-

ness index of 73,000 x 0,62 (0.4)'/4+73 _ 37, 400, psi. The magnitude
of the index is a measure of the fracture toughness, The higher the
value, the tougher the material from the standpoint of strength in the
presence of cracks, For extremely ductile materials, "a" tends to
infinity and the fracture toughness index tends to the ultimate tensile
Strength at that temperature,

SECTION 2

The relationship between uniaxial and biaxial stress-strain curves

The apparent stress-strain curve for a material under biaxial stresses,
(ie) the relationship between the longitudinal stress and the longitudinal
strain in the presence of a transverse stress has in general a somewhat
Steeper slope in the elastic range. For the same value of plastic strain,
the stress in the plastic range will be also higher under biaxial condi-
tions as compared to uniaxial conditions, If we assume that the Von
Mises criterion is valid, that is, the relationship between octahedral
shear stress and plastic octahedral shear strain is independent of the
Stress-state we can derive a transformation condition to obtain the

biaxial stress-strain curve from uniaxial stress-strain curve., This
means that for every point on the uniaxial stress-strain curve, a point

on the biaxial stress-strain curve can be found that has the same value of
the octahedral shear stress and plastic octahedral shear strain, Since the
material parameters in the form of the stress-strain curve are a basic
part of the theory of fracture proposed here, it is evident that a knowledge
of the uniaxial fracture enables us to predict the biaxial fracture, This
sectior)x essentially follows the contents of the Douglas Report SM-38958
(Ref,6),

Consider a cubic element subjected to the stress system @7 and 02
and let the stress state parameter be defined as

A = (2.1)
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To convert the uniaxial stress-strain curve to the biaxial curve, it will
be necessary to consider the elastic and plastic strains separately as
shown in figure 3, The equation for the elastic strain is

= (oY
be=gfo-pe) = 20 pa) (2.2)
where p is the Poisson's ratio,

Denoting by subscripts U and B, uniaxial and biaxial conditions
respectively, we have from the Von Mises condition

(Toet g = (Toct )y
('Poct )8 = (rPoct v

The octahedral shear stress is given by

(Toct) = 'é'/(o-l_ez)z+ (62-65)%+ (63-67)2
and since 3 is assumed to be zero here, we have

(Tect) = 4 [62(1- )2+ 6,297+ 6,2
?ﬁ(:—dwﬂ)* (2.4)

For uniaxial stressingX = o Therefore

(Toct)y = —g— 6v (2,5)

and since it is assumed that the uniaxial and biaxial octahedral stresses
are the same, it follows from (2.4) and (2,5) that

6,=6,(I-0+ a2 )z (2.6)

(2.3)

Thus equation (2.6) relates the biaxial longitudinal stress 6, to the
uniaxial stress6ys and the stress state parameter o,

We now make an additional assumption that the plastic strains produce
no change in volume. Thus

AV = g”, +£z,P+ EJP =0 (2.7)
The octahedral plastic, shear strain is
<L
2 2
Troct =2 {(Eip= €34 (£~ Ep+(Ep-€,0 )2 (2.8)

Using relation (2.7), equation (2.8) becomes

2 4
(Tpoct)g= 75 (Erp+ €2 + £ )% (2.9)
; €2 :
Define E—l;:- = B, and %: B2 to obtain
(Croct)s = 7 €5 (124 p2)T (2.10)
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We now have to determine B,and B,in terms of the stress state parameter
- The deformation theory of plasticity which is consistent with
equation (2,7) gives

Ep = A'(G‘,—S} =—§—'€.(2—°‘)
i Ay (- By 6:)= 406, (~142)

Esp = A, (-5-£&)- 2siti-a)

(2.11)

Thus we obtain

_ &p _ -]+ 2K 2.1
B = L . 2% (2.12)
and £ _ =]-a
P = 2L - S
Substituting (2,12) in (2.10) gives
2/z L
Urce)e = 55 E1r (=t et (2.13)

For uniaxial stressing = 0 and equation (2.13) gives

(rPoct)u = V2 Ep (2.14)

Since it is assumed that the octahedral shear strains are the same
it follows from (2,13) and (2.14) that

L
(&p)g = (Ell’)u(l’;“ )(""‘*"‘z) > (2.15)

Equation (2.15) solves for the biaxial strain in the longitudinal
direction in terms of the uniaxial longitudinal strain and the stress:
State parameter . The total strain can be obtained by adding

the biaxial elastic strain to biaxial plastic strain, Thus

_L
Erp. = %(I—/‘-d)-}-g_(z—d)(l—dfﬁ(z)I(E,r)y (2.16)
The uniaxial Stress-strain curve can be expressed in the form
6y 6v n
= Y ol e 2.1
fv= 1o (&) (2.17)
h UNis ihs plasts i
where C(€'5)15 e plastic strain (E”)P 4
Subsituting this form in equation (2,16), we obtain
o G 5 60\
€18 = B (1-pMo)+ £ (o (1w o) R . (&) (2.18)

Substituting for 6U in terms of a (‘7’1 from equation (2.6), we obtain

€10 = T U-p9) + L (2-w)(1-wsu? ) Tc {%(t~a+u‘)%} "
(2.19)

7 L Ayt o 6 ™
= E'/(l—/‘u)+ C(I—-Z—)(l—ol+uk)z (& )
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n-i
Let  Eft-pa) =Epand c(1-F)(1-x+a2)7 = ¢,

The equation for the apparent stress-strain curve under biaxial con-
ditions is therefore

_ S O Y2 2.20
EIB—",:TB“*CB(gs) ¢ )

In otherwords, since Ep > E, within the elastic limit, the material
behaves as if it were stiffer, The strain hardening coefficient "n"
remains the same, Figure 4 shows the comparison between the theory
and test data for a thin walled cylinder with X =0,4236, Figure 5
shows the comparison between the theory and test data for a thin walled
sphere, The comparison between the theory and the tests may be con-
sidered fair,

SECTION 3

Biaxial Fracture Relation

We shall now obtain an expression for biaxial fracture by using the
relationships between the uniaxial and the corresponding biaxial stress-—
strain curve. The basic equation for fracture in the present theory is,

Sp
AXCI=X)(1+0. 596 22

E 6p \—/
[+ CN=— (2£
Syp 6"7:')

6’9\ —_

1+

It will be recalled that the factor A is dependent upon the specimen

width and the crack tip radius, The effect of a Stress in the perpendicular
direction is to make the aspect ratio of the crack finer (ie) tend to reduce the

crack tip radius. Since the crack tip radius occurs in a square root form

in A, such an effect may be assumed to be a second order effect and as such

in this approximation may be neglected, Consequently we can assume that
A is a constant and has the same value in biaxial as under uniaxial con-
ditions, The variations of all the other terms may now be calculated,

Op for biaxial condition can be determined from equation (2,6)
Thus ( )__L
650 = O [— &+ X2 ) 2
i (3.1)
Similarly

Eg=Eu(1-px)”! (3.2)

I\

ng = My (3.3)
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-
E?B: 9’0 (I—ol-l-o(") 2 (3.4)
n-L

Cp=Cu -5 )(I-x+ux?)2 (3.5)

6p -1 % Y+ )
=—— = (— (3.5)
(ﬁar)a ( o‘aP v

Substituting these relations in equation (1,19) we obtain

Gpy (1—x+ ot 2) % 4

071.&:
ACI=-AN)Y(1+0.£9¢ A2)
1+ A' :_ ¢ . al o (3.6)
et - 2)2fcn E.(Spe Y
|+ ,-,ua}“ o+ )_[cn(,:7 6‘:4’) J

Equation (3.6) is the governing equation to determine the biaxial

failure from uniaxial failure, As an illustrative example let us

consider the conditions for failure for the test specimens of the preceding
example with = 1/2, We have

. 65 n—/
Gpy = 78000 psi, Cn;% 3_—;) = /%0 and A= 232%/30=¢to08

o -
Cl-w+x2) 2 = (L76)°F = L us4

o 9.53
-5 }( 2y2  (1-0.28) I3
I- &+ o?)3 = I-0.5+0.28)% =.>
= pnt (l—o.sxo.s)( ol o
Opy X 1.154

Emng =
. & SOFA(=N)(1+0.59EN)

[+ 0.229 x |80
. _ 1154 X 73000
14 120N (1-X)(14+0.§95A?)

I+

Snp l. 28

alnd = 5
Ful I+ 2.0 A U=N)( I+ 0.CPEA?)

where Syt is the uniaxial ultimate tensile strength used here to non-
dimensionally express the biaxial fracture strength,  This curve for
biaxial fracture and the corresponding uniaxial fracture curve are plotted
in Fig.2 on a log-log paper. It will be observed from the figure that the
effect of biaxiality is quite severe. In the range of X\ between 0,1 and
0.4 the curve behaves essentially as a straight line, The fracture tough-
ness index in this region is found to be 19900 psi. The slope of the curve
is =1/2.54 and thus a = 2,54,

The trends predicted by the preceding analysis are essentially in line
with the tests results for failure under biaxial conditions. Materials
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under biaxial stress conditions tend to be somewhat more crack sensitive
than under uniaxial conditions in the normal engineering test range of crack
lengths, The steepness of the fracture curve is dependent upon the degree
of biaxiality and the strain hardening coefficient, For materials with
essentially flat top stress-strain curves, that is, as "n" takes on large
values of about 50 or more, there are indications that the effect of biaxiality
can become quite significant. From a study of equation (3.6) it will be
found that for values of % between O and 1 y the maximum decrease in

fracture strength occurs for «=0.5.
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Schematic of the stress variation at a point p
Just ahead of the line of maximum principle stress,
Stress at point p very close to stress at p' on the
line of maximum principle stress. Stress at p*

is on the elastic unloading part of the stress-
strain curve.
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