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ABSTRACT

Continuum mechanical aspects of the fracture process have
¢n combined with microscopic considerations to evolve a simple
wdel for the time dependent fracture process. According to this

sodel, fracture occurs when a dominant defect develops to a size

hich is critical for the existing boundary loading.

Starting from the idea of spatial variations in the density of the
olecules and their binding energy, an expression is developed for the
te of defect initiation. Under this concept flaws need not pre-exist
n the material as discontinuities but may develop under sufficient
vading from weak regions where molecular bonds are such that they

0 not possess their maximal strength.

In the absence of adequate information on the growth behavior
{ macroscopic cracks the defect initiation relation has been used as
n approximation to the growth history of cracks. In conjunction with
critical crack size criterion of the Griffith type, suitably modified
y Rivlin and Thomas to account for viscoelastic solids is shown to
orrelate well with experimental data.

While the complexity of the fracture problem in viscoelastic
solids dictates a number of assumptions in any analytical approach,

e relatively close corroboration of the ideas presented in this paper
with experimental evidence speaks for the fundamental role they play
in viscoelastic fracture.
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INTRODUCTION pends on the history of deformation, it appears surprising that the

s#umulation of failure should be independent of the infinite number of
d histories which could lead to the same stress-strain state. We

11 see later that the three load histories employed by Smith are of
¢ry similar nature and that different types of loading histories could
#d to fracture behavior not predicted by the failure envelope.

) In the past few years increased dependence of engineering de-
Sign on polymeric materials has called for a proportional understandi
of ulti.rnate behavior of such solids. While a considerable amount of
eXperimental data has accumulated, there remains a great number of

satisfactory theory of fracture in viscoelastic materials can be devel- HE FAILURE MODEL
oped. For example, very little is known quantitatively about the

fracture initiation process on the molecular level; similarly, on a
macroscopic scale, the laws governing the viscoelastic behavior of
materials undergoing large deformations have not yet been formulated
quantitatively ina practical manner, so that a precise large-deformatio
vViscoelastic stress analysis for even relatively simple test geometrie
1s not yet possible. In view of these most obvious difficulties any
theory offered at this time and irrespective of its apparent successeg
should be regarded as an exploration of certain concepts rather than
as a definitive statement.

Failure in polymeric materials may occur either by excessive
mrmanent flow deformation or by fracture. While crosslinked polymers
il only by fracture, linear polymers may fail both by flow and fracture
pending upon the rate of load application and the temperature. In this
#ork we shall be concerned only with the fracture of polymers. Since
cture is the result of crack growth we shall first derive from exper-
iental studies some ideas on the propagation of cracks.

In our later work we shall be concerned with three particular
tets of crack growth, namely:

gk 5S)everal theories of fracture in polymers have been advanced (1 1) the energy required to propagate a crack;

. - Their common limitation seems to be an oversimplified
view of the fracture process, and, particularly, an inadequate descrip
tion of the continuum mechanical aspects of gross rupture. While
tbese simplifications lead also to uncomplicated mathematical expres-
sions the resulting calculations are applicable only over limited range
of time an?‘ﬁemperature. A notable exception is the theory of Bueche
and Halpin which was developed concurrently with the theory pre-
sented here - These authors based their calculation on the experi-
mental findings of Smith(78) to which we shall refer in detail later, ; :
and on a concept of crack propagation advanced by Williams(9; the work required to rupture inter-atomic bonds of the molecular
While the resulting calculations corroborate the experimental findings ructure (surface energy) and other dissipative losses at the tip of an

; dvancing crack{10,14) " Because of their rate sensitive properties
iscoelastic materials possess fracture energies which depend strongly
n the rate of crack propagation (15,16),

, An example of this velocity dependence is given by the energy
required to propagate a crack at a constant rate through a thin sheet.
If a long strip containing a crack along its major dimension (cf.Fig-
sre 1A) is clamped at the long edges and strained uniformly across
the width, then the crack will propagate at a constant rate, provided
the strain is sufficiently high and the polymer is in its long-time,
Fubbery state. If, furthermore, no work is done on the sheet during
~ track propagation then the fracture energy T is equal to the energy
stored elastically per unit strip length in the uniformly strained .
tegion ahead of the crack(13,14), Qne may thus determine the fracture g
_ energy from the stress-strain behavior of the strip geometry without
4 crack and the applied strain and relate it to the measured crack
propagation velocity. As an example, Figure 2 shows the fracture
energy T as a function of the crack propagation speed for an H-C
rubber* used extensively in this work.

¥ The author is indebted to Drs. R. B. Kruse and T. A. Neely of
the Thiokol Chemical Corporation for supplying the material for these
_studies.

2) the relation of fracture surface markings to
propagation speed;

3) the growth rate behavior of relatively small cracks;

these we consider now briefly in turn.

When a new surface of unit area is formed in a solid a certain
ount of energy is required(“v 12,13), This fracture energy is equal

of the calculations hardly withstand a critical examination. A further
limitation of the theory is its orientation toward failure in uniaxial
stress states and the lack of provision to extend it to failure in multi-
axial stress states. Although we shall demonstrate the calculations

for the theory presented in this paper on failure in essentially uniaxial
Stress states the present work is equally applicable to failure in multi-
axial stress states.

The experimental work of Smith from which Bueche and Halpin
developed their theory has also been restricted to uniaxial tensile tests,
In an effort to arrive at a more precise description of the failure prop-
erties by reducing the scatter of failure data obtained in uniaxial,
constant strain rate tests, Smith plotted the stress at break against
the strain at break and called the resulting curve a failure envelope.
He then noted that the failure data obtained in constant load and constan
Strain tests coincided with the failure envelope derived from failure
tests under constant strain and constant load to rupture. He therefore
suggested that the failure envelope determines the failure properties
fc_)r arbitrary load histories. Inasmuch as viscoelastic materials are
distinguished from others by the fact that their stress-strain response
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In the same figure the velocity range has been divided into three
parts according to the appearance of the fracture surface. For crack
speeds below approximately 10-2 inches per minute the fracture sur-
face of the H-C rubber is rough; crack propagation appears to take
place through the formation of polymer ligaments (cf. Figure 3) which
then rupture and thus effectively advance the crack tip. At higher
s.peeds, there is insufficient time to permit extensive ligament forma-
tion a.nd !:he fracture surface becomes progressively smoother as the
velocity increases. This is evident in Figure 4 which shows fracture

surfaces resulting from steady state crack pPropagation tests as describee

ser‘{ed for cracks which propagate non-steadily such as in fracturing
tens?le specimens. With information of the type embodied in Figure 4
one is thus able to obtain a qualitative picture of the rate of crack growt
during the fracture process. Figure 4 shows a series of fracture sur-
faces on tensile specimens failed under various strain rates and stress
levels. The change from slow to fast crack growth is clearly evident.
Howeve_r, note also that with increasing strain rate, which implies
increasing fracture stress, the rough area formed by slow crack growth
dn'.n3mshes. An equivalent statement of this observation is that the
critical crack size at which transition from slow to fast crack propaga-
tion occurs decreases with increasing failure stress level. For the
regder who is familiar with the calculations derived by Griffithf“) for
brittle materials this inverse relation between failure stress and criti-
cal c1:ack size is referred to a crack velocity transition instead of
ve}omty initiation. We shall use this fact later to establish a rupture
criterion for viscoelastic materials.

It remains now to examine the relative time spans of the initial
?low and_ the final fast rate of crack growth in a tensile specimen. It
1s conceivable that the final stage of fast crack growth is insignificantly
short'when compared to the time required to develop a crack to the size
at which transition from slow to fast growth takes place. In this case
fracture could be characterized in terms of the slow-to-fast crack
speed transition and a detailed treatment of the final rupture stages
yvould play an insignificant role in fracture prediction. That this seems
indeed to be a reasonable assumption is evident from Figure 6 which
5}30ws growth histories of identical cuts in strip specimens as shown in
Figure 1B. While the period of slow crack propagation could have been
prolonggd considerably by making the initial cuts smaller, it is obvious
from this data that the time of slow crack propagation tends to be long
compared to the final stage of crack growth.

Although one expects that materials which are different from
the H-C rubber employed in these tests yield quantitatively different
results, the same qualitative behavior should be observed. We proceed
therefore to incorporate these past experimental observations into a
fracture criterion.

: In order to calculate the time of fracture we envisage the fol-
lowing model of the rupture process. A crack may develop from a
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roscopic or macroscopic defect and grows relatively slowly until
reaches a critical size, after which instant it propagates fast until

umplete rupture of the specimen occurs. The time of fracture is
given essentially by the time required for slow crack propagation,
and it is determined by a suitable criterion of critical crack size.

We proceed now first to establish such a criterion after which we con-

dider the initiation and slow growth stage of a crack.

A Condition of Critical Crack Size. As an introduction let us
¢ecall briefly the ideas which lead to the prediction of fracture in
brittle materials containing cracks. The basic concept underlying
he calculations by Griffith is the law of conservation of energy,
ar more explicitly the transformation of elastically stored energy
into surface energy as a crack increases by an infinitesimal amount.

thematically the condition that one or several cracks in a stressed
body become unstable is given by the condition

0 '—- <
E+DwWy <0 (1)

= rate of change of free energy
= rate of energy dissipation

= rate of work of the boundary forces.

¢rack area is equal to the surface energy y one has

: : dA
4 &l giBet
Fans Wy ¥ at (2)
where A is the area of the crack. For the case of a centrally cracked
slate of unit thickness under a uniform peripheral stress o, Griffith
showed that the inequality predicts catastrophic failure when

2
i T 2

_with ¢ as the half crack length.

The derivation of an equivalent relation for the prediction of
fracture in viscoelastic materials meets two major difficulties, namely
that 1) the shape of the cracks is in general not known and 2) the neces-

_sary stress analysis is intractable when large strains are encountered¥.

Although a detailed qualitative analysis involving various arguments on
the above two points can lead to the result below, its derivation rests

~ ultimately on arguments of dimensional analysis. In the interest of

brevity and clarity we present therefore on dimensional grounds the
analog to relation (3) for a viscoelastic solid as
kT (& (4)

el Scrit crit)

where Corpit = expresses the size of the crack just prior to
* An exception is the analysis of fracture initiation from a spheri-
cal void in a uniform hydrostatic tensile stress field. (Ref. 15).
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rapid crack growth

= the elastically
from the crack

Wel stored energy density far away

a proportionality constant

= fracture eénergy commensurate with the rate

of crack growth & .. .
crit

The prediction of failure is thus based on the relatively simple condi-

: W, and the crack size c, both

the strain history of the material, reaches a critical

equal to 2 /1 and the value for T for the H-C rubber
order of 0.5 pounds per inch according to Figure 2.

Crack Initiation. It is common in failure analyses to assume
that fracture starts from surface cracks which were introduced in the
process of specimen pPreparation. While this is probably true in many
1nsta.nces, it is also observed that fracture starts in the interior of a
specimen (16,17) It is therefore appropriate to consider the more
general situation in which fracture can start at an arbitrary point in
.the material. Later, such points of fracture initiation may be easily
interpreted as surface defects.

extensive and purposeful experimentation, it is nevertheless interesting

to speculate as to possible mechanisms which may take part in the frac-
ture process,

Although many polymeric solids seem to be isotropic and homo-
geneous continua, this appearance breaks down when they are examined
On & microscopic scale. At this level of observation one would encounter
spat?al variations in the densities of molecules, chain entanglements
and in crosslinks as well as bond strengths. Such variations in the mo-
lecular structure are likely sites of failure initiation. For instance, a

; for polymer blends involving small amounts of low mo-
lecular weight material, Similar effects may be expected from regions
of low molecular density or low molecular bond strength.

s.trengt'h regions interspersed with weak regions where molecular con-
flgurzltnons would favor rupture initiation. In order to arrive at a
quantitative evaluation of the defect growth within a weak region, we
make the following assumptions:

1) Defect growth is due to bond rupture and chain

slip.page. Successive bond rupture depends on
chain slippage, and vice versa.
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2) Bond rupture or chain slippage occurs spatially
at random within a weak region; newly created

radicals do not affect unbroken bonds.

3) Bonds may reform and new chain entanglements
may develop. The resulting configurations are

indistinguishable from the original ones.

4) Each weak region contains a large but finite

number of breakable bonds.

Under these conditions it is possible to derive an expression
net increase of broken bonds by using linear rate law
theory(19,20). et N and N, denote, respectively, the number of
nbroken and broken bonds. The increase of broken bonds NZ—N1 is
ien given by the differential equation

for the

N, -N N,-N
d A 2 1 o e
E‘t‘{ N }"( 12“’21){ N }leZ'le) =
o o
N = N, + N, = constant
o 1 2
@ = rate constant determining the average rate
12
of bond rupture
®,1 = rate constant determining the average rate

of bond formation.

For our purposes, it suffices to consider only the particular solution

f the differential equation (5)*. If one assumes that the number of
roken bonds in a weak region is proportional to the effective area of
4 defect, one finds the time dependent area of the defect by integration
f (5) as

t t T
A—o = exp (- S‘(wlzwLle)dt S‘ ( 12 —wzl)exp[S.(le‘leZ)dO] dr (6)
o o] o

where AO is a normalizing constant area.

In order to obtain the rate functions w]2 and gl— consider a
large number of identical polymer chain links under equal loads. If
an amount of energy h is required to break a single bond then the
theory of rate processes predicts, for example, that

ok The number of broken bonds in the equilibrium state (zero stress)
_depends upon the relative magnitude of the rate functions @17 and @y

at equilibrium which are then more appropriately called equilibrium con-
stants. Although the equilibrium constants must be determined by exper-
iment it is more convenient to choose them equal in magnitude. This
implies (cf. Eqn. 5) that the number of broken bonds is equal to the
number of unbroken bonds in the equilibrium state. Inasmuch as we are
interested only in a deviation from the reference state this assumption

is not very critical; the general character of the solution is not changed.
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_ho
o= e KT (7)
where k = Boltzmann's constant
f = Planck's constant
T = absolute temperature and
f = elastic energy per bond.

If there exists a distribution of bond strengths ¢(h) rather than a single
va%gelg};e average rate functions can be expressed approximately
as\®

£
— . X kT
©27 7 @(T)

; (8)
150 (T) e KT

joe] h
where A is a constant and ®(T) = S‘qa(h) e deh is a function of the
temperature only. 4

Equations (5) and (6) become thus, respectively,

dA/A
A . f
—ar e = —K{A—o cosh Ef’f - sinh ﬁ} (9)

and

t t T
Aio = exp {- AS.cosh kLTdt'} - Sv)\ {sin.hk—fT— [exp XS‘cosh;—Tde]}dT' (10)
o o o

where we have written dt' for ®(T)dt. The prime notation signifies the
usual temperature reduced time for thermorheologically simple mater-
ials. Either of equations (9) or (10) determine the size of a defect as a
function of the loading history through the rate dependent elastic energy f.

The elastic energy f per bond may be obtained approximately
from the phenomenological stress-strain law for any desired loading
history and by then dividing the elastic strain energy density by the
number N of breakable bonds within a weak region, i.e., f = Wel .
Of course, we consider here only the elastic or free energy befause
the energy dissipated in deformation processes contributes merely to
raising the temperature while only the free energy contributes directly
to the fracture process(3),

Crack Growth. Having considered the crack initiation stage
from a quasi-molecular viewpoint we need to be concerned now with
the growth of such defects into cracks which become sufficiently large
to cause failure. The laws which govern this growth stage are poorly,
if at all, understood(4:9,10), We therefore propose to use the
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reviously derived defect initiation relation (10) as an approximate
#scription of the time dependent growth of a crack until it reaches
8 size which is critical in terms of the energy balance equation (4).

While such an approximation is not completely arbitrary, it

is also gratifying to note that it may be physically not unreasonable,
#lthough the molecular mechanisms implied by equation (10) are prob-
#bly not quite the same as those responsible for crack growth outside
of the postulated weak regions.

The reason that the approximation may be a reasonable one
tan be found in a qualitative comparison with the experimental work
of Regel(‘21 » who measured the growth of cracks in plasticized poly-
methylmethacrylate under a constant applied stress. Since for his
#xperiments the elastic energy did not change appreciably with time,
quation (10) would predict a time dependent length of surface cracks
with approximately constant depth as
I

Wel

NkT
Figure 7 shows a qualitative comparison of equation (11) with Regel's
data. The similarity of the theoretical expression and the measure-
ments is evident. It should be repeated, however, that the differential
failure equation (9) is, at this time, an expedient assumption. Its
special value rests in the fact that it agrees well with both direct and
indirect measurements and that it accommodates arbitrary loading
histories.

£
1
o

Wel

= tanh NKT

{1 - exp[-At cosh (11)

It may be noted in passing that there exists a similarity between
equation (10) on the one hand and the strain in a linearly viscoelastic

material subjected to an arbitrary stress history on the other. If one
defines the function
t
F(t,T)= exp{-A t::osh—el dr (12)
1TIS Sxp NiT
-

then equation (10) may be written as a non-linear superposition integral

t

Alt) _ ; el

A " A.SF(!I,T) sinh q dT (13)
o

while the uniaxial strain for a linearly viscoelastic material is given
by the linear superposition integral

t
€(t) = S‘D(t,‘r) g%dT (14)
o

where D(t) is the strain-independent creep compliance and o is the
stress.
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In principle, we have now completed the prediction of fracture
within the framework of our simplified fracture model. By using equa
tion (13) to calculate the time dependent crack size we may determine
from the criticality condition (4) the time when this crack progresses
into the final fracture stage. In the next section we consider now the

application of the equations (4) and (13) to some practical test situations,

APPLICATION OF RUPTURE PREDICTION

The calculation of the fracture properties from the crack growth
condition (4) requires knowledge

relation (13) and the critical crack size
of the free energy density . As was pointed out in the introduction, the
mathematical formulation of large deformation viscoelasticity is in an
embryonic stage and the determination of such an uncommon function
as the free energy appears difficult at best.
the non-linear stress-strain law by a modified linear one such that the
energy density as calculation from the two stress-strain relations
agree reasonably well.

It has been found(z‘z’ Flpe o) that the stress in a large deforma-

tion relaxation experiment is given by the time-strain factorized form

ole,t) = Erel(t) f(e) (14)
where Ere](t) is the relaxation modulus for small strains (cf. Figure
8A) and f(€) is a nonlinear function of the strain € which reduces to €
for small strains.

o=c(6)=ER f(€) (15)
where now E_ is the long time or rubbery modulus. This relation is
shown in Figure 9A for H-C rubber. Shown in the same figure is a
linear approximation

o=aEpe (16)
where a is an appropriately chosen constant. It turned out that a suit-
able choice is a = 0.22 for the material used. Because the energy is
obtained from the stress-strain relation by integration its functional
dependence on the strain is very similar for the two stress-strain
laws as shown in Figure 9B. Henceforth, we approximate the energy
density in a solid undergoing large deformations by the energy density
in a linear solid, the modulus of which is a fraction of the small strain
modulus of the nonlinear solid, even when viscoelastic effects are
present.

Turning now to the calculation of the elastic energy in a lin-
early viscoelastic solid, recall that the mechanical properties may
be represented by mechanical spring and dashpot models(25,27,28),
For instance, the generalized Maxwell or Wiechert model in Figure
10A may be used to represent the relaxation modulus for the H-C
rubber shown in Figure 10A if 17 spring-dashpot combinations are
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The relaxation modulus is then represented by
17
-t/'ri
Ererft) = m, +Z e

i=1

tovided T, = 10_(1+1). The elastically stored energy is then the energy
tored in the spring elements of the model. Similarly, the energy dis-
ipated during deformation of the viscoelastic solid is represented by
»¢ work done in extending the dashpot elements. In order to correct
br the nonlinear nature of the stress-strain behavior we multiply the
ndividual spring constants by the correction factor a.

(17)

The Constant Strain-Rate Test. The experimental determination
of the ultimate uniaxial tensile dafa gor the H-C rubber employed in this
ork is given in detail elsewhere and need not be repeated here.

As the strain €(t) = R-t, prescribed to increase linearly with
e, is the same for all the elements in the Wiechert model (springs
dashpots in series) one finds for the stress in the ith spring and

e—t/‘ri

o.=m.7. R 1 - (18)
3 s

where T. = n./m_ is the relaxation time of the ith Maxwell element.
The enetgy in the ith spring is therefore

(19)

(20)

where the first term represents the energy in the degenerate Maxwell
element and a is the empirical correction factor to account for the
ion-linear material behavior.

Using expression (20) we can now calculate the crack size by
_numerically integrating the differential failure equation (9). Since
failure usually starts from the corner (cf. Figure 5) and extends
over a triangular region the crack area is proportional to c?, ¢ being
the crack dimension along the surface of the specimen. When this
dimension reaches the critical value prescribed by the condition (4)
the specimen has failed. The result of these calculations are shown
in Figure 11 together with the experimental data.

The Dual Strain-Rate Test. In order to demonstrate in more
detail the effect of the strain rate history on the failure properties we
consider now a uniaxial test which involves two constant strain rates
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POintfs for the same material represented in Figure 11. Since the cal-
culations for this type of strain rate history are essentially the same

as for the constant strain rate test they need not be outlined specifi-
cally.

Harstad has verified these calculations qualitatively on an H-C
rubber of slightly different formulation than that represented by Fig-
ures 8 and 11. His results are shown in Figure 13&0). Although the
data scatter is considerable it is nevertheless clear that the order in
which high or low strain rates are applied has a significant effect
upon the ultimate properties. This result is similar to that which
Valluri found for metal fatigue(31),

Crack Pro agation at Constant Velocity. As a further example
of a different type of rupture experiment we consider the steady propa-
gation of a crack through the strip geometry shown in Figure 1A. A]l-
though the previous rupture calculations considered the growth of a
crack in a macroscopic tensile sample similar to the crack in the
stressed sheet, it should be interesting to apply these calculations to
the fracture of small material filaments (9) undergoing tensile rupture
at the tip of a crack.

In terms of the present failure model we envisage the process
of crack Propagation to occur in the following manner: As a point on
the line of crack Propagation is approached by the steadily advancing
crack tip it experiences a time dependent strain rate arising from the
stress concentration at the crack tip; accordingly microscopic defect
growth occurs at that point with a rate determined by the differential
f§1lure €quation (9). But when the point is just reached by the crack
tip the combination of local defect size and elastic energy must satisfy
the critical condition (4).

For reasons of mathematical simplicity we limit the occurrence
of rupture to a narrow band along the line of crack propagation across

effects for slowly moving cracks* one can deduce from the stress analy-

sis fpr this geometry(19,32) that the stress across the narrow band,
Oy» 1S approximately equal to

S
Gy:ow —“0'5‘\/-5 +1—%[e 3b+e Zb]} (21)
Vx+p
* Based on the equilibrium shear modylus of the H-C rubber stud-

ied here the €quivoluminal wave speed is 10 in/min (~150 ft/sec).
Speeds below 10 in/min should therefore be admissible for this analy-
sis; the maximum velocity measured in the experimental studies was
approximately 100 in/min.
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where x is the distance from the crack tip, b is the half width of the
test strip and p has the meaning of a crack tip radius. A complica-
tion arises from the presence of the o, stress parallel to the direction
of crack propagation. In order to keep the calculations simple we

will neglect this stress* and reduce the problem of crack propagation
o a problem in uniaxial tensile failure under a special stress history.

Making the steady state velocity transformation = x - vt where

_ ¥ is the (unknown) crack velocity we consider therefore a small uniaxial

¢nsile specimen as located at x = X, far ahead of the crack and subject
t to the stress history
£ S_EE
’ 3b 3b
e

oft) _ 0.5Vb , | o

o vEt+p

with £ = x5 - vt. The problem of crack speed determination consists

(22)

o —

o _
o

thus of finding the value of the velocity for a given value of the applied

tress 0w such that the criticality equation (4) is satisfied when £ = 0,

The time dependent elastic énergy at a point undergoing even-
al rupture can be calculated again with the help of a viscoelastic
aterial model by summing the energy stored in the springs of the
But because the stress is now prescribed we employ the gen-
eralized Voigt model in Figure 10B. The strain in the ith Voigt
element is determined from Duhamel's Integral as

t -0/T.
€,(t) =§ ;—“T—"l e  lge (23)
I3
o

and upon using the stress (22) there results
rp
0.5vb e VT 1‘(%, E+p

)

€;(t) = - {

T T, vy
I3 st (24)
. 9[36 B, B ]}
2 VTi+3b 5v‘ri+2b

_where F(i,u) is the incomplete gamma function of order 1/2. By

summation of the energy in the springs of the generalized Voigt model
the total time dependent energy is obtained as

Although the Ox stress is by definition zero at the crack bound-
ary it is not zero ahead of the crack where its value is a fraction of the
Oy stress. (It is also a tensile stress.) Note, however, that as the
sKear stress is zero on the crack axis the energy density there is, for
an incompressible solid,

- 2, 2 ;
Wel = I/Zme[cy + Gx - Oxcy]’
this has a minimum for o, =0 /2 which is, however, only 25 percent
smaller than when o_ = 0] Neglecting the Oy stress should therefore
not influence the results any more seriously than the unknown crack
tip radius »p .
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5 (t)Z 17 Using these constants permitted also the calculation of the crit-
w_ =1_"y + 1 m.e? (25) ical crack size at failure. For the constant strain rate tests this crack
el 2 rng 2/, 740 8ize is shown as a function of strain rate in Figure 15. The values
i=1

_4re quite commensurate with the experimentally observed ones (see,
. for instance, Figure 5).

with m representing the short time response modulus of the material, /
The us@é of the eénergy relation (25) permits again the numerical inte-

] Finally, we turn to the consideration of the failure envelope
gration of the defect rate equation (9).

_¢toncept proposed by Smith(8), 1n this form of failure data presentation,
, the discrepancy between the experimental data and the theory based

has related the effective radius of curvature _on the linearly viscoelastic theory is most obvious at low stress levels.
/ This may be seen in Figure 16 where the dashed curve represents the
calculations based on the linear stress-strain law and the solid line
has been corrected for non-linear effects in accordance with Figure 9A,

turns out however, that a velocity dependent radius of curvature does
not lead to g significantly different result, so that a constant radius
Was used in the calculations. A particular value of p = 0.01 inches
Wwas chosen to make the theoretical results coincident with experiment,

Recall from the introduction that it has been suggested on the
basis of constant load, constant strain and constant strain rate tests,
that the failure envelope predicts failure for arbitrary strain rate
histories. The reason that these loading histories lead to equal rup-
ture stresses and strains may be due to the fact that they do not give
rise to markedly different stress histories near the rupture point.
Inasmuch as it has been demonstrated previously that failure accumu-
lation is stronger the closer the failure point is approached(19) one
should perhaps not expect too much variation in failure behavior under
these loading histories. Note also, that the strain histories of these
tests are such that dZe /dt% < 0 for all of them. Figures 17A and B
show a series of loading histories and the corresponding stress-strain
traces. Only those stress-strain curves for which d2e /dt2> 0 deviate
markedly from the other ones near the failure point.

Since the radius of curvature is an unknown parameter in these
calculations the computation of crack velocities actually amounts to

sist'e.:nt with the findings of Greensmith(34) who measured effective
radii between 0.01 and 0. 02 inches. The calculated velocity values

are shown as the solid curve in Figure 14 together with the experi-
mental data,

EVALUATION OF THE FAILURE MODEL

Following these observations, the calculated failure behavior
in the dual strain rate tests was entered on the failure envelope plot.
The failure behavior in the fast-slow sequence, shown as the heavy
black circles in Figure 16, was virtually indistinguishable from the
constant strain rate rupture behavior. In contrast, the slow-fast
~ strain rate sequence gave rise to the trace determined by the heavy
black triangles, which distinctly do not fall on the envelope. While
the difference of failure under the two strain histories is not large
for the relatively small range in strain rates considered in these
hypothetical tests, and while this difference could be masked by the
usual data scatter, it is possible that a wider range of dual strain
rates results in a larger discrepancy with the failure envelope.

) Until now we have withheld discussion of the past calculations
in order to present it from a unified viewpoint. Due to the proper
choicg of the unknown parameters the agreement between theory and
€xXperiment is quite satisfactory considering the fact that a linear
stress-strain law was used in place of a nonlinear one. Indeed, all

the discrepancies are consistent with the approximation of the stress-
strain law,

We have already mentioned that of the several constants entering
the failure equations (4) and (9), the fracture energy T and the crack
geometry constant K should have the approximate values of 0.5 pounds
per mc}.1 and 2/77-, respectively. Furthermore, it turned out that the
normalizing area Ag in the differential failure equation (9) could be
taken equal to the Cross-sectional area of the tensile specimens. In
the case of the crack propagation calculations this value is of ques -
tionable meaning. While, in principle, the constant N in equation (9)
s}_lould be derivable from molecular considerations, it was here
simply chosen to make the calculations agree best with the experimen-
tal data. The same is true for the constant A\, for which there does
not seem to be an a Priori estimate. It turned out, however, that the

calcu}ations Were not very sensitive to its value and it was thus chosen
as unity (minute‘l)

In terms of the present failure theory this effect of load history
upon the stress and strain at failure can be explained simply. Recall
from the initial discussion on the criticality of crack sizes that at low
stress levels a crack will grow to a larger size before onset of rapid
crack propagation than it would at a comparatively higher stress level
(see also Figure 5). It follows that a crack size which has developed
in a low stress field to a size which is subcritical for that stress level
may suddenly become critical, even without further growth, if the
stress is raised by increasing the strain rate. For such a strain
history one has the condition d2e /dt2> 0. On the other hand, if
dze/dt <0, then the defect will always be subcritical for successive
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stress states until fracture occurs.* On the basis of this admittedly
limited exploration of loading history effects, one might expect that
the failure envelope charagterizes failure behavior within experimenta
accuracy whenever dze/dt < 0. On the other hand, if dZE/dt2 >0
such as may be the case when a viscoelastic material is subjected to
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