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Abstract

Based on an idea that ductility of perfect lattice, that is, coun-
‘erbalance of nucleation of cleavage crack and dislocation loop at high
itress level, may play important roles in the initiation and propagation of
| cavage crack, some calculations were presented for the activation energies

nucleation of crack and dislocation loop, and their consequences were pur-
ued on the plastic work associated with the propagation of cleavage cracks.
It was suggested that nucleation of dislocations at the tip of crack may be
‘he primary factor controlling the plastic work in fast propagating cleavage
racks at high temperatures.

L. Introductions
In the previous theories presented so far for cleavage fracture of crys-
“ils, emphasis has been laid mainly on the behaviours of pre-existing dislo-
\tions, for instance, stress concentration caused by piling up of disloca-
nnsflj or stress relaxations due to movement of dislocations at the edge of
ropagating crack.(z)(q
In these theories, theretore, lattice resistance of dislocation, density
I pre-existing dislocations(?®) and also rate of multiplication of disloca-

ns(%) have been considered to be important measures for ductility of crys-

1ls.

On the other hand, experimental evidences show that the ductility of

iiskers, dislocation free crystals, depends on easiness of nucleation of
location, 5) that the propagation of cleavage crack was in many crystals

irrested by dislocations nucleated at the tip of crack,(s) and also that dis-
itions are rather easily nucleated at various stress concentrated regions.

These evidences suggest that the stability of crystal lattice, i.e. nu-
lcation of crack or dislocation loop in perfect lattice, is another impor-
.t factor in the criterion of ductility of crystals at most in atomistic
fimentions.

There seems to be no exact calculation method for this problem at the
.sent time though it is considered to be a fundamental one. In this paper,
wever, we shall attempt some preliminary discussions on this problem(7) in-
nding their consequences on the mechanisms of initiation and propagation of
lravage cracks.

o Criterion of ductility of crystals at 0°k.

The criterion of ductility of crystals which are strained homogeneously
1 0K was in principle provided by M. Born 8) in his theory of stability of

‘vstal lattice. The criterion may be stated in a convenient form that; a

vstal may cleave or deform plastically according as the ratio ¢ =T /G »

. . onstant characteristic to the crystal, is larger or smaller than the ratio
L Tmex /§uey, s @ COnstant characterizing the state of applied stress, where
Jin and T#h, are the critical normal stress of separation and the critial

liear stress of plastic deformation of the crystal lattice, and Trx and ooz

the components of applied stress corresponding to Teh and (i
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r;sEectivglg. Some calculations are illustrated for stress-strain relations
of Lennar ones type crystals under the tensile and pure ini
0 € she
in Fige 1 and s p ar strainings

) On the.other hand, the stress-strain relation has a close connection
with the PeleFls' stress through the structure of core of dislocation.
Some calcu}atlons based on the generalized Peierls' approximation which was
developed in the previous paper ®) are illustrated in Fig. 3, it may be
noted that the Peierls' stress is very sensitive for small variations in
shear stress-strain relation.

& 3. Cr%t§rion of ductility of crystals at finite temperatures

At finite temperatures, however, the criterion of ductility of crystals
are governed by the relative magnitude of the probabilities of nucleation of
crgck and dislocation. The same method of analysis as proposed for the
Peierls stress presented above, can also be applied to activation energies
of nucleat%on of two-dimensional crack or dislocation pair. In this paper
however? simple calculations are illustrated for these quantities assuming’
;pprgprlate sinasoidal laws for tensile or shearing stress-strain relations.
ezri:niﬁ:n;z;mfhe tensile stress-strain relation of a crystal is approximat-

O=Gyain 2BL  \= 202Gs

as shown.in F%g. 4b, then we obtain the activation energyl for nucleation
of two-dimensional crack, Fig. 5a, as

U=z (R ()

On the other band, for the case of dislocation pair, we must take into ac-
count successive nucleations of partial dislocation pairs and stacking fault
betweeg them when the dislocation can split, where the activation energy is
det?rmlneq bY that of first stage, i.e. the nucleation of a partial dislo-
ca?lon pair, in the case of F.C.C. metals, while the processes are more com-
pllcateq in B.C.C. metals. The present approximation, therefore, can only
be applied to the cases, for instance, the first stage in the case of E.C.C
m@tals and the nucleation of twin dislocation pair or the complete disléc;-.
tion pair in the case of B.C.C. metals.
Then by using appropriate assumptions the approximate formulas for

ree- a cases ca .
thre dimension e n be calculated as shown in Flgs 5b and 6, and

y= G <szm (GG V2
RN 2) oo/,

~ 6 2Jt T fT — Lo

U= (P (Rez=y2 (1)

4T(1-v* Teh

whe? o;bab agd ”Q/1&h are nearly equal to 1, where Ug and Ug are the acti-
vgtlon energies for nucleations of crack and dislocation loop (half-disloca-
tion loop and stacking fault layer in the case of F.C.C. metals), E, G and
Y Young's and rigidity modulus and Poisson's ratio respectively, @ ;he spac-
ing of nearest atomic planes of cleavage, the distance of nearest

The calculation is based on the method presented by Nabarro(19) for the
case of dlslqcatlon pair, but recalculated in this paper because his calcu-
lation contained some mistake as pointed out by Read.{11)
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(tomic planes of slip. Some numerical examples are illustrated in Tables. 1
md 2.

It is noted that these formulas predict much smaller values for the ac-
‘vation energies than those calculated by Griffith's theory for Ug, Fig. 5b
(il Table 1, and Frank and Cottrell's(le) for Ug, Fig. 6 and Table 2. This
~ans that the thermal nucleation of crack and dislocation under high stress
.1 considered to be the processes easier than those suggested in the former

weories,

b Applications of the theories to propagation of cleavage crack.
The theories stated above are then applied to the problem of growth of
1stic work associated with the steady propagation of cleavage crack.
i le macroscopic condition of the propagation of crack is described by the
Yott's equation,Kla the conditions for the progress of cleavage crack and
e wrowth of plastic work associated with it may be given by the microscop-
conditions at the tip of propagating crack. And when the velocity of
;ack 1s not very near to that of shear wave, the processes of propagation
. be described as a rate process, that is, at finite temperatures disloca-
on loops may be nucleated ahead of the crack together with cracks. On the
ther hand, the dislocation loops may spread in the stress field neighbour-
the tip of crack with the velocity which depends on the mobility of dis-
wation,
At first the condition of the propagation of cleavage crack is express-
{ by that of successive nucleation of cleavage crack all over the edge of
vopagating crack, that is,

Nex2d=1
n:TIVQ’NZm~U/E{T,Q:KGC%_€M>) (2)

wre M, is the number of cracks nucleated per unit area, 2d” the area of

. nucleated crack, Ue the activation energy of nucleation of a crack at

. edge of propagating crack as assumed in the form presented above, Omax
. operative maximum stress at the tip of crack at finite temperature, (th
. (leavage stress at the tip of crack at 0%k, V the velocity of propa-
‘11on of the crack, )/ the frequency of atomic vibration, N the number of
toms per unit volume, a? a number nearly equal to 1.

On the other hand, the plastic work per unit area of the crack W is

nressed by,

VV:::21153
ne=-LvaN'om % Umk (T T), (3)

rww>7k is the number of loops nucleated per unit area, and gthe plastic

'k caused by the spreading of one dislocation loop in the stress field
.wead of the propagating crack, Ug the activation energy of nucleation of a

.location loop at the edge of the crack, Twax the operative maximum re-

|ved shear stress in the direction and on the plane of a slip system at

.« tip of propagating crack at finite temperature, and Ttp the correspond-
;. theoretical stress.

On the mobility of dislocation, many factors have been investigated on

's velocity and temperature dependencies, for instance, Peierls' stress,
n-linear effect of core of dislocation when the velocity is near to that
t shear wave, 14) scattering of sound wave, phonon viscocity, and also
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effect of dispersed impurities, but few reliable data are available over

wide range of elocity and temper e 1 ) We sh therefo
Vi peratur y
e all erefore onl adopt

V=Cep-HT , E=Aln%s (4)

whefe?[jis the velocity of dislocation, and Ct that of shear wave. Then
estimating ﬁ-by means of appropritate assumptions for the spreading of ’

dislocation lOOp as explalned in Fi 7 and combinin 2 nd 3) we ob-
.
g ’ g ( ) a ( )

/ ?"’(%E) =3z, %&b’ 3Aﬂ_}‘?i(&l/’ci) +a4e Ly, (za'yoc’zv’i)
+ﬁ%(y‘a‘§—ﬁ)—@m(ﬂ"%7’ Ly 1o, (5)

The f%rst.two terms on the right hand side of the equation (5) represent th
coptr1§utlon of mobility of dislocation, and the last three termspth ‘
tribution of brittleness of crystal lattice, © oo

Then %n order to estimate the terms in eq. (5) for the cases of LiF, F
and Cg, which are representative ones of brittle, semi-brittle and ductii ¢
mater?als respectively, the available experimental values for these cr stel
are llsgsg igsTable 3. Those for LiF were taken from the papers of e
Gilman. )( ),(rmﬁ/ in Fe was estimated from our experiment(17) ang A i
Fe was deduced from the activation ener y of Bordoni's peak in Nb’(lg) ;"
in Cu from the Bordoni's experiment.(19§ Since cleavage crack is’st Tt
300°K in Fe where the value of W is about 10%~ 5 C.G.S., we took th g
sir}tativizgvaue of W as 6x 10%, and K= 1/2, Tnp@ G/é0;4-><’101°C.G S earl;ceip;f;o
:;;2>;éoeq CE?;S; in the case of Fe, and estimated the value of left hand

_ p s (log_m W/KT maxb) =2, And the same value of the left

hand side term was assumed for the case of LiF at 300%

Then using the values in Table 3, the terms in rigﬁt hand side of
eq. (5) were estimated and listed in Table 4. The terms underlined —
:;fedcalcula?ed using eq. (5), the term underlined — was assumed, the
as;jme;ijafbjg gz;ziﬁ) were neglected as small quantities, and also we

O?hef factors which contribute to plastic work, for instance
pre-existing Frank-Read sources or Cottrell locking, were then examined d
the results showed that these factors were reall i;portant when the s é ;ﬂ
of crack and also temperature were rather low,("5 but not essential fagte
compared with the one estimated above when the velocity of crack and temfrs
p?rature were rather high. Main reasons for the deductions were that, at
first the number of sites of multiplication of dislocations, such as ; R
sour§es and sites of double cross slip is more limited Secéhdly the timé
regu1red for the multiplication of dislocations is conéequently lon d
thirdly the activation energies for the processes of multiplicationgiié -
1arger,’or the processes are more insensitive for temperature excepting that
of la?tlce resistance, compared with those of nucleation of dislocsti . t
the tip of cracks in the critical cases stated above, e

Although our estimation of Table 4 is no more than a tentative one be-
c?use of mgch unknown factors particularly of the mobility of dislocation at
plgh velocities, we may draw out from it some qualitative conclusions For
1nst§nce, if we assume the limiting value of (log.. W/K Twmaxb) where.cleav
age ls.able to be maintained be 3, our estimationsopresentegbin Table 4 re_
dict higher critical temperature for propagation of cleavage crack for LEF )
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compared with those of Fe and Cu. This seems to provide a qualitative ex-
planations for the experimental evidences that, the arresting temperature of
propagation of brittle fracture in iron is known to be about 400°K, =9,
iingle crystal of LiF shows brittle fracture even at temperature near the
melting point of 1116°K in Charpy test,(zl) and no cleavage is found on Cu.

 Su Discussion
1) Present study was started based on the idea that the cleavability of

rystals may essentially be the intrinsic characteristic of crystal lattice
«t high stress level, then the criterion for stability of crystal lattice,
i.e. counterbalance of nucleation of crack and dislocation loop, may be the
primary factor in explaining the ductility of various crystals including the
nitiation and propagation of cleavage crack.

This idea may really be applicable for the case of perfect crystals
under homogeneous stress, which is idealized one of simple tension test of
«hiskers, or that superposed by hydrostatic tension, as discussed in the
resent paper. But actual problems yet remain in the criterions in atom-

itic regions with very sharp stress gradient on one hand, and relative im-
yortance of this factor compared with those of mobility and density of
re-existing dislocations on the other hand.

i Propagation of cleavage crack is a particularly suitable theme for
‘+sting various theoretical predictions on these problems comparing with ex-
criments, though our treatments remained rather crude because of many fac-
tors yet unknown. But we may note here some points for the purpose of
r1tical discussions.

The first one concerns with the possibility of nucleation of disloca-
on loop at the tip of crack. According to Friedel's estimation'?) this
rocess is considered to be a very easy one, because its activation ener-

1s negative or very small at most as shown in his estimation, contra-
to the conclusion of himself and also the assumption used by Tetelman. =)
« value of activation energy, however, become larger when we take into ac-
wmt more realistic factors as realistic elastic stress system and choice
the system of slip at the tip of crack which were treated by Tetelman.
irthermore, when we take into account non-linear compornents of strain at
‘h stress level, for instance in the case of ’qufx T, the constraint
w tor G'M/Tm=l/¢ near the tip of crack is considered to be larger
ran that expected from linear elastic calculations, presumably rather
.ombles to the case of rigid-plastic or elastic-plastic stress system =R)
which the value of O'mm/’[:m was calculated as the order of 25 compared
th that of=1 in simple dislocation model of crack tip. This factor may
Juce a larger value of the activation energy. For instance, if we esti-
¢ O = E/10, Teth =G/30 and E/G=2, then we obtain 1/3 = Ot/ =6. On
- other hand, if we take the probable value of the activation energy KsTth
i qe (3) as 1.14 eV from the previous estimation, Fig. 6 and eq. (1), and
it ofks o‘;h(ﬁ - = ks “Tth (l—a/ﬁ) =0.26 eV in eq. (5) from the experi-
‘ntal value of Fe listed in Table 4, then we obtain d&p==o.77. This is the
It order of magnitude expected from above considerations.

Then the second problem concerns with relative importance of the factor
nucleation of dislocation loop compared with those of pre-existing dis-
wations in the criterion of propagation of cleavage crack.
At first, when the ductility of crystal lattice is large, i.e. (f-@)
1 «orrespondingly the factorl(saab(ﬁ-d) in eq. (5) is very small or nega-
tve, the tip of crack may be blunted by rather homogeneous nucleation of
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di ;
t;iioizgiz: loopsfbefore onset of nucleation of cleavage, even if the 1lat
ance of dislocation is large and d i i e

t : ensity of dislocati i
small, as illustrated in the case of Cu in Table 4, 71t mighta;;o:hgscvery
. ases

by Tete%man("5 and also our theory.
e This deduction seems to constracdict with the evidences of
mperature observed in iron and steels, which shows that fast p

Questions however may be remained for the role of grain boundary on

- Furthermore, our pre-

o the gl € iron which
arp notch yet showed finite transition temperature, and it waslSoth:g Vsrz
muc

inf ini
luenced by pre-straining though the density of mobile dislocations was

; On the later
may point eut further that the lattice resistance of mobile dislocZiiZ:nfnwe

pinning, (17)
age igniigs o:?:r hau'u.:lc,l many twins usually observed on the surface of cleav
3 considered to be nucleated at th i )
crack, (17) because so m el e b B i
any amount of deformation i i i

i nay ot pe : associated with the twins
C c plained by only th i ipli i

pre-existing twinning dislocationsY ’ ¢ nechanism of DL isRion of

A .

Lir (Hni ;he other example 1s that the Cleavability of single crystals of

prelimf shaw) wasAllttle influenced by pre-straining of some percent in ou
nary experiment, though the density of mobile dislocations was in :

§ 6. Conclusion

O%h is larger or smaller thanCl=‘Z§/6;u~ at OOK, while the

PrEcE and i ° Ve probabilities of i
dislocation loop at firite temperatures. The activatigscisatlén of
ergies

S——

e
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rack, and it was shown that contribution of nucleation of dislocation loop
1t the tip of crack on the plastic work may predominate in the range where
the velocity of crack and also temperature is sufficiently high compared

with those due to multiplication of dislocations from pre-existing disloca-

tions.
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Table ,
(Oth—0es) /T4 .01 .04 il 2
Uz .V a=a 134 .268 A24 .599
a=a/2 017 .033 .053 075

Table 1. ,oNumerical examples of Uc calculated by the equation (1),
where E=2x107", ))=10.25, I¥=1.2x10%, @= 2.86x 10-°C.G.S. (Fe).
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Table 2
F.C.C. (f11) [211]
N T
e .01 .04 51 2
Us(P) eV .0098 0195 031 .0436
Us(C) .0585 234 538 117
B.C.C. 112 [111]
Th =~
e .01 04 1 .2
Us (P) eV .0138 0276 .0436 .0617
Us (C) .0538 215 538 1.08
G=8X101, y =025 5— 2.86X10-8 C.G.S.

Table 2. Comparisons of Ug between Co

PeiEfls' approximation Ua(p). For F.C.C. we assumed/\= a/Z{F; where a is
lattice constant, correspondingly G/T¢p=17.8 in Peierls’ approximation. On
the other hand, we took A=b and same value of G/T,=17.8 in Cottrell's
formula cited in Fig. 6 for the sake of comparison. For B.C.C. we took

/\= a3/6, corespondingly G/T¢h = 8.9 in Peierls’ approximation, and same value
of G/T, in Cottrell's formula.

ttrell's theory Uz(c) and

Table 3

Tmax A 1% gg{
. (eV) 7
—_
~2  (600°K)
4~}2~40 0.2 2102 (300 » )
>2X105 ( 77 5 )
—
100~1000 ~2 (300°K )
—
i~5

0.05

Table 3.

Experimental values taken from literatures.
values were used

X The underlined
in the calculations of Table 4.
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Table «
left right Ist 2nd 4th 5th
1200°K 2.8 3 2. X03 0.3 = 11
LiF 600°K 14 3 1. <03 0.3 — 22
' 300°K 2. 3 0.5x2.3 23 — 44
1K 0.1x5.3 >5.3 471
600°K 46 6 2.00.3 0.3 — 23
Fe 300°K 2. 6 1.0<0.3 0.3 — 46
90°K 0.3X1. - 153
90°K 10.5 12 0.5X0.3 0.3 — 20
0 o —450
4K
Table 4. Estimated values for the terms in the equation (5).

Fig. 1 Tensile stress-strain relations of Lennard-Jones type'crystal
n=12, m=6, n; exponent of repulsive potential, m; that of attrac.:tlve
potential, C; lattice constant parallel to tensile axis,a_° ; lattice con—.
stant of stress free crystal. Upper curve is the case where lateral strain
is restricted, and lower curve free from constraint. The curves were cal-
culated by electronic computer.
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Fig. 2 Shearing stress-
tals with various exponents of
direction Lll—é] on the plane (1

and the normal stresses in (111]) and
by appropriate quadruple equations so
values of elastic constants at initial

strain relations of Lennard-Jones t

N

ype crys-
potentials (n,m). Shear is applied in the

11), where the strain in [170] is restricted
[112]are free. The curves were fittet
as to coincide with the calculated

states and also the elastic constants
and potentials at the maximum potential states. And E/G= 3.2126 when n= 12

G=G (111) [11Z] strain in [1Toy

and m= 6, where E=E
is restricted.

.02‘
) Q)
(I<2) = 427
3 max
277
&)
b)
. /59
+ /.
c)
s B
e) (d) {
s 127x s 23
SN
28xs00 S
/ B < (“T&) 17
Fig. 3

Dependency of Peierls’
Sstress on various form of shearing
Stress-strain relations of crystal
lattices calculated based on gene-
ralized Peierls' approximation,
Curve (b) is Peierls-Nabarro's case,

and curve (f) is Foreman Jaswon and
Wood's case.

[100) constraint free,

(a)
n
Tth B
D
a=f(u)
c
A A
A \
A 2
¢ T T
(b)
Fig. 4a, b.

Model of nucleus of crack.
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Xc Oth
+ _&C Vth
th aoo) X

Fig. 4C Stress distribu- Fig. 4d
tion along the axis X when

(Uth - Foo )/Gy, 41

Dependency of size of
nucleus of crack ZIC on the applied
stress(a-X . is the length BC in

Fig. 4a, Sin § =0/ (th Xc>o0as 0oo-> Oth,
the curve is applied only for §27/3.

Griffith 3dim
1.6
L6+
T ) Griffith/ 2dim
. c
Fle " 2 Lo x2x
i Griffith Sy b
— 10} &
i ‘l\ T;/:\
i a
’.’, e |
oy 08} s
1 2 :\
o w 1
5.8
~ 0.6 Peierls / model \? /
N 05F
05 _ S
IS)
021 Peierls 2dim
o x2xc
0.1
0.1
0 - 07
10 09 08 /07 06 10 09 m/ 08
G, N
Gen
(a) (b)
Fig. 5a, b

Activation energies of nucleation of crack calculated by
Griffith's theory and Peierls' approximation, a; two dimentional case, bf
three dimentional case, where U. is assumed to be equal to 2XUc,; . It is

no at Griffith's theory predict non-zero activation energy at 0= Oy
ﬂiEV/a_.

657



K. Kitajima

4
Cottrell model
s 3 r
Ol
N
Peierls model Disl. Pajr
2 r

X2xc

X2xc

03/21: gx-zv)z(

1 03 03 06 04 To/Ten 0

Fig. 6 Activation energies of nucleation of dislocation loop calculat-
ed by Cottrell's theory and Peierls’ approximation, where Ug= ZXCUS’Z.
Cottrell's equation can be written in the form when T /T,~1,

Us=56F (722, ) (1-E)
ST 2 2T T, T/
where b is magnitude of Burgers vector, T,a constant related to the energy
of dislocation and not equal to Tep in general, but we put A=b and T,= Tth.

for convenience's sake in this figure. While A = 2MbX Tip/G in Peierls:'
approximation.

Fig. 7 Spreading of dislocation loop nucleated at the tip of crack.
Dislocation loop nucleated at the point @ spreads to the points b', ¢' and d'
on the slip plane ax , according as the tip of crack proceeds to the points
b, ¢ and d. In the evaluation of?, we estimated the diameter of spreading
of a loop by the distance ad' assuming that the velocity of dislocation was
retarded to V/2 at the point d', and Cpg 0}2 45° and consequently Ko< %,
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