£+1 INITIATION AND GROWTH OF VISCOELASTIC FRACTURE

M. L. Williams*

ABSTRACT

Using an energy formulation including the work of
yiscous dissipation, fracture initiation and growth in
linearly viscoelastic materials has been investigated.
Assuming the viscoelastic character of the criterion is
the same for all geometries as for the spherical cavity
gtudied, the appropriate extension of the Griffith
initiation criterion is believed established. Inasmuch
4% the threshold is time dependent, illustrative results
are presented for four typical loading inputs, namely
gonstant stress (strain), and constant stress rate (strain
rate). If inertia effects are neglected, the formulation
4lso permits a direct calculation of flaw size with time.

INTRODUCTION

The energy balance concept has heen considered one of
the cornerstones of fracture mechanics. Since its orig%g?l
application by Griffith(l) to brittle materials, Orowan

and Irwin(3) have a?plied it to ductile materials, and
Rivlin and Thomas(4) to fracture in rubber. As summarized
in an earlier review(5) one can take the position that the
concept itself is independent of the material to which it

For a conservative system, one needs thecrefore to
separate the input energy into its various output components.
In the simple brittle case, the deformations are all presumed
to be elastic and the work put into the specimen is dissi-
pated or transferred into the work of creating new surface
and, for a propagating crack, into kinetic energy. In
materials which are more rheologically complicated, as in

the plastic, but time independent, flow of ductile materials
or in the viscoelastic time dependent deformation of rubber,
one quite clearly would expect these same dissipative mech-
anisms to exist, but in addition would also expect others
which, respectively, include plastic work and viscous dissi=
pation. Inasmuch as these quantities are all scalar, which
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;s gf Cﬁurse one of the main attractions of an energy

siseg:cregslgracture, the previous "Griffith" critical
tre S can characteristi i

similar form. R eristically be cast into

oy = K/ET /1

cr

(1)

ghiﬁs ;aé:r? ionstant for the geometry under consideration,
expressos Té modulus, and ¢ the crack length. 1In this

for the matel_riflects the partlcu}ar dissipation process

Slamiie oo ria concerned; for brittle, ductile and visco-
or T Quaf':espectlvely, one would tend to insert Tp, TQ
mate¥ia1 wouida;lvely then the extension for a more general
Ty by 7oL € written by replacing the scalar energies

o = k/(E/1) ('I‘b +Tq + Ty + ...) (2)

cr

:gégh summation could also include Txe: for the kinetic

britgi effect! along with any other appropriate terms.

ons re:or‘;laterlals, for example, Tp >> Tg + T, + and
e : LD, : W

corm. S the appropriate Griffith controYllng dissipation

In

plastyzezgii for dgctl}e metals it has been shown that the
Rt o contr}but19n a;ways exceeds the other terms
oyt ma{' Fhe Situation is not quite as simple for visco-
im Drite :r;als. Here, at cgld temperatures the material
rres o nd the Tb term dominates. At elevated tempera-
o brod er the viscous deformation associated with T,

S. Quite clearly then at some intermediate t?g?era—

: are equall
(??0£222;, and thergfore A generalized consideration sgch ag
plaste is at;ractlve.' Our experiments with rubber and

at various strain rate and temperatures have there-

fore i
led us to a more careful consideration of the dissipation

mechanism in viscoelastic fracture. The major point for this

discussion will be a calculation of the time dependent critical

stress in a visco ic m i
c ; - -
WOk elastic material subjected to various input
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THERMODYNAMIC CONSIDERATIONS AND ENERGY PRINCIPLES

, To the uninitiated, there has frequently been some
gonfusion as to the manner by which the strain energy stored
is transferred into surface energy, particularly insofar as
the effect of stress or displacement boundary conditions is
woncerned. One convenient way of regarding this problem,
which is related to the equivalent results obtained for fixed
grip and fixed force_fracture tests in elastic materials as
_indicated by Orowa?(7), is to consider the appropriate varia-
tional energies (8 , i.e. minimum potential energy, V(uy)
V(uy) = [ U d(vol) - I (3)
g

where displacements are prescribed (with no body forces),
and minimum complementary energy, V*(o;4),

Ve(o55) = [ U d(vol) - ig Ty ug (4)

u

where stresses are prescribed. The integrals are carried
_over S_ and S_, meaning the area over which stresses or dis-
placements, respectively, are prescribed. In this way, when
(3) and (4) are supplemented by the surface energy term 24T,
which variation is always zero with respect to changes in
applied stress or displacement unless crack elongation occurs,
one can consider variations about the equilibrium state at
which for a linear elastic system,*

(5)

ZS Ti u
o]

=2 Ueq

ileq
Thus one finds for example, upon varying the complementary
energy at equilibrium with respect to crack length, holding

the stress on the boundary fixed

avgq(oij)/az = aueql(oij)/az - zaueq(cij)/az + 2T =0

or
(6)

U 2T.

eq(°ij)/“'lo

Similarly, for the fixed grip loading holding u; on the
boundary fixed during the variation with crack length

such that a(zou Tiui)/al =0

¥If the load-deflection relation is non-linear, e.qg.
p = ke™, then the factor 2 is replaced by n + 1.
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Weq(us)/3L = 2U_ (u;)/32 + 2T = 0

or

—aueq(ui)/azlu = 2T (7)

which are equivalent because

—aueq(oij)/azlc = aueq(ui)/azlu (8)

For viscoelastic materials exhibiting a rate dependence,

it is believed more appropriate however to deal with the
thermodynamic power equation (9, for the systen, neglecting
kinetic energy and body forces, which is

I =F+ 2D + SE (9)

where the dot denotes differentiation with respect to time,
and ! = power input of the applied loading at the boundary,
F = rate of increase of the free energy (strain energy),

2D = dissipation (mechanical power converted into heat flow)

and SE = rate of increase of the surface energy. Specif-
ically one has

. Y i §
o g ; R B
fo] e
Feam=d. [ (5ot 4 dven (11)
dt vol o ii
sg = 4 / T d(surf) (12)
a€ .

By way of simple illustration of the mechanics of the
computation, consider the amount of strain energy and dissi-
pation stored in a tensile specimen characterized by a
simple three element viscoelastic body of a spring and
Kelvin body in series (see insert),
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g g g~ 9
[}

El Dl Tl = Dlnl

|

gverall stress strain law: € = Eg + el

Q

€ =D 40 + (D + D.)o
Tl%*’e ngdt g9 1

Stress distribution in two-element component

g

; B iRy
spring

a

n del/dt
dash

1

. . inds
For a step input, 050 in applied stress, one find

e, = Dyo Il - exp(-t/1;)]
g = oyl = exp(-t/7,)]
oq = 9o exp(-t/tq)

and for the overall strain response
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€= {Dg * Dyl exp(—t/rl]} 9 (19) The previous result, (22), becomes, when generalized
2
. ) u + U =0 _“[D (t) - (D /2)] (24)
. The dlrgct approacb 1s to add the strain energy per springs dashpot o crp g
3:;; volume in both springs and the viscous energy in the
Pots, The alternative approach is to use the definition, (1l1),

gonsidering a unit volume, to find

u = g5 2 t . i
springs  © Pe/2 * é Osts At = "OZDq/2 + & 5 cf, dssz P+ f2pdt = [Soiat = Itood[cong+Dlll-exp(-t/Tl)]}]/dt
= oOZDg/Z + (002D1/2) (1 - exp(-t/rl)]z (20) = :ozog/z +°°o°1[1'ex9('t/‘1)] + °02Dg/2 - 0Ozog/z
0] _ ft . ¢ 5 = ooz{Dg * Dl[l—GXP(—t/Tl)]} - aozDg/Z
dashpot o ‘4@ 4t =M i (deg/de) < de (25)

hich is the same result.

(00201/2) 1 - exp(-2t/1;)] (21) ] ) )
As no creation of new surface is involved in this problem

: ; 5 _ 2 _ e
Hence the total input energy is stored in these two parts, F 42D = % (Dl/Tl) exp( t/Tl) = g8 = & (234)

Oone the elastic recoverable ene a i
S nd the oth the irre-
Coverable viscous work. Knauss??g) and Betzuff

completed a study showing.the relative percentage of work At this point the difference between the energy balance in

the small (per unit volume) illustrated above, and in the
arge can be recognized. In particular,the distribution of
nternal energy per unit volume is integrated up to time, t,
hen integrated over the volume, which in fracture problems
¢an change with time as new surface is created, and then
differentiated to balance the power input.

?s‘fmithFlz) has.proposed that at least for tensile specimens
bal ure 1S rate independent, this conclusion should perhaps
€ restricted to monotonic loading histories where the dis-

VISCOELASTIC FRACTURE
The total stored énergy can now be combined to yield The calculations incident to fracture threshold are fre-
quently algebraically complicated. In the original Griffith
work on a stressed sheet containing a central crack, the
 degenerate solution from the Inglis elliptical hole was used,
and the analysis conveniently required elliptic coordinates.

~ It has been observed however that for a wide variety of dis-
continuity problems, the application of an energy balance
_criterion leads to essentially Griffith-type results which

are quantitatively similar. For example the critical stress
for a central crack of length 2a in a sheet is hardly different
than that for a penny-shaped crack of radius a. (13) Upon com-
paring these two cases, and several others, one is tempted to
inquire if there exists some other geometry which is suffic-
iently simple to demonstrate an energy instability, but yet
tractable enough to study boundaries which may change with
time.

8 + U
SPrings dashpot

1]

052D [1 - exp(-t/t;] + oozDg/2

9521Dg + Dy [1 - exp(-t/t)1} - 0,2 /2

(22)

In the case of the generalized Kelvin model, i.e. an infinite
combination of the two-element Kelvin bodies in series, the
Qbove expression is modified by replacing the subscript 1 by
1, and summing over i. One further may note that because

the general definition of the Creep compliance is

Dopp (t) = By * ZD; (1 - exp(-t/1,)] (23)
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Simplified Geometries There is another interesting incidental observation.

. ne can rearrange (31) to write
Of these classes, two are very appealing: (1) a cylin-

drical cavity, and (2) a spherical cavity. Consider for
example the first of these, for which the stress distribution,
independent of material properties, is

1 F (a%/r?)

T = [oéax/(ZE)]a A (32)

homas(ls), in his early work on the tearing of rubber, found

0(5) = 04 33 (26) that he obtained a reasonable approximation of the surface
1 - (a%/b%) energy term, T, when he multiplied the uniaxial strain energy
density at fracture by the local tear radius, which for a tiny
ylindrical hole would be the hole radius a.
P o 2 /2 2
u(r) = 2 .1+ 3(@”/r%) . o 1/s (27)

Without showing the calculations at this time because it
ill be done later in greater detail, the results for a spher-
cal flaw in an incompressible body subjected to uniform ten-

2E 1 - (a?/b2?)

for internal radius a, external radius b, and uniformly loaded,

, at infinit e similar.
Or(b) = a5 Using (5) for an assumed incompressible material, ‘0 taity ar mitar
(o
U (0..) = (1/2) o u(b) + 21b o =4, S22 (33)
eq  ij o 1 - (ad/pd) 37 a

2,2 = 2/ BT/

sty % b° 1 4 (3a¥bd) B Snay = 27 ET/a (34)
4E

1 - (a?/p?)
hich indicates that fracture in a spherical cavity occurs
when the flaw size is twice as large as in a cylindrical
¢avity, presumably reflecting the increased biaxiality of the

So that using (6), and noting the surface energy on the inside
radius is 2naT, such that 3S/3a = 2n7T

2 2 op stress and thus increased strength capability.
s b 2,2

e 2 L2 5—1—123—49—1] = 2aT (29) In summary then, the following table shows the critical
4E d3a 1 - (a?/b?) plied stress for four cases

and thus the critical applied stress at instability is

—oe - JEr (30)
1 - (a2/b2) 2a

As a side issue which turns out to be important for other
purposes, it may be observed that the maximum stress is at the
internal radius,

Critical Griffith Stresses

Cylindrical Spherical
Geometry 2-D Crack Cavity 3-D Crack Cavity
(Griffith) a/b+ 0 (Sneddon) a/b+ 0

Critical
Stress V2/m /ET/aO /2/2 YET/a V21/3 /ET/ao (4/3) YET/a

Loading Uniaxial Biaxial Uniaxial Triaxial
Inasmuch as there is considerable quantitative similarity in
the results, it is considered reasonable to use the simpler
geometry and associated stress distributions for studying the
fracture in viscoelastic media, where the difference would be
expected to occur mainly in some modifications to the material
(time dependent) modulus.

i =20 /0L - (a%/b%)] = 2/ ET/2a (31)

max

This result may be useful for determining T from small holes
in pressurized membranes, or to connect the surface tension
with maximum tensile stress for ring specimens (a-+b), as ?YT-
monly used in certain tests of rubber ultimate properties )
by replacing a by &/2w.
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THE SPHERICAL CAVITY re D__(p) is the transformed creep compliance, so that
Crp
The fracture instability threshold of a spherical

cavity in an infinite incompressible medium subjected to
uniform tension at infinity was treated earlier for the
case of f%nite elastic deformations assuming a neo-Hookean
material, (16) Before considering the case of a viscoelastic
pody and finite deformations however, it is pertinent to

Cr (r,p) = PDcr

al(a 3 I3 f(t

s - (42)
B pDcrp(p) GoL [ 2 3

1 - ak
The primary advantage in working with the spherical cavity,
or for that matter, the cylindrical one, is that the stress

3 aao3f(t)
distribution is independent of material properties. Hence

© . pD__ (p) S(p) ; S(t) 2.2
pcer 2 l—ak3

bProceed to calculate the various elements of the power equa-

tion. nd thus

o} - t aDCI‘ tErd S(t)d }
- S(t) + T)ar
: (r,) {Dcrp(o) (&) + [° S

Stress Loading

I
lo

For a spherical cavity of initial radius a in a large
med%um where a uniform tension, o f(t), is applied at the
radius b, one finds the stresses © are given by

3,.3
1 - a(agp”/r3)
op(rst) = o f(ty O 7 (35)

l‘ck3

(43)
= - 2ee(r,t)
where as a matter of definition, Dcrp(o) H Dg = l/Eg.

ini instantaneous stored energy rate as
1+ (a/2) (ao3/r3) Upon defining the instan

a,{ret) = o (r,t) = o _f(t) (36) ) . . B L "
: ? g 1.- o Q= 0 8p + 046 + °¢e¢,v=l/2 = lo, g le, 4
where
2 -
o t 3D (t=1)
= 3 ko= = 2 s(t) 2 s(t) + J I 5 - R S(r)dT}
a(t) = [a(t)/aol ;1 k= ao/h (37) NG -+ Lo ! oy
. ; < (45)
Using th? 9?p1ace transform analogy for the associated elastic »
problem, (17)"ghe has ,
oy oz(r,t) _Then . 2 D I
ar(r,p) = OoLr ] (38) ;t odt = o ft S(¢) 3 D S(£)+f€ _crp'> 7 S(r)dt|de
° 3 | 9 3(g-1)
o 6 o ) £=1
r
- ae(r,t) (46)
o4 (x,p) = 9L, (39)
a
o -and

From the transformed stress-strain law for an incompressible

2
o 1-k"a
23 fb ft Qdt 4nr2dr = _0 ]t S(e) 2 [Dgs(g)

medium (v = 1/2), € = ot W -cr/z, there results 4n a(t) 3 a"a o 3¢
Er(r,p) = D(p) [ar-ae] = pDcrp(p) [ar-ae] (40) D Foor)
& 2 - + [0 SR~ s(u)ar (47)
eo(r,p) = ee(r.p) = -D(p) [3r-56]/2 = -pDcrp(p) lﬁr'391/2 o 3(g-1)
(41)
1120 1121
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Finally, the energy stored is On the other hand, another solution is seen to exist

£ the bracketted term vanishes. This condition is the

1 [F + 2p] = & QL.fb [t Q 4nrlat ar ntegral relation for a(t), which is the time history of
A dt 47 a(t)o he internal growing fractured surface, because
3
" s(t) = sla(e)] = - 3 —i—iﬁl—ﬁif%i (53)
9g ; £ 3D __ (t=t) , 2 1-[a(t)/b]
=i () [D S(t)+ [ S S(t)dr}'
2 it | g o 3 (t-1)

It is pertinent at this point to inquire into the physics of
the condition because the variation with respect to time
presumes the stress distribution stays symmetrical. It would
deem somewhat unlikely that fracture would initiate simul-
aneously at an infinite number of uniformly distributed
urces over the internilsyeriphery of the flaw. Neverthe-
less, as argued earlier in the paper dealing with finite

% 3
+9_ 3 [l‘k “] P s [D s (&)
o 9 g

Qa

lastic strains, it is at least a possible mechanism. For the
5 fg aDcr (E-1) rpose of investigating the form of the viscoelastic behavior
! __ETE_—T—_ S(t)dr |dg (48) erefore, it is also believed to be representative.
=T

The general expression (52) is first written in the equiva-

nt fo
where the definitions of S(t) and a(t) have been incorporated. 4 m

2a%(t)T D

Th input due to th lied st t the bound d :
r=b, B -, a1 WPAp N DO EIS APRITeC strems AL Fhe boundcy g = j? It A (s2(e)jag + [* s(z){ucrp(o) S(¢)
[e) o [o]
I = 4anp? o £(t) A(b,t) = 47 b3 oo f(t) [-2_(b)/2] (49)
59 Biae £ 32D (£-1)
i D . 2
) s 2 b ST smat]a; =P f3 adw) o)
t/an = (-0 2/2)£(t)3 D S(t) + —SEP _ s(r)dr | /3t (50) © dg3a(g-1) 2 12 1-[a(t)/b)3
o) 3 (t-1)
t 32D (£-1)
The surface energy rate is L . (o) [ SZ(E)dE + ftfe S(g) S(r)—=XB 4. dg
5 P 5 oo 383 (g-1)
SE/47m = 3 (a“T)/3t = 2aaT (51)

Upon comparing the last expressions, it may be observed that the
input rate term is balanced by the first of the two terms in the which can now be evaluated for special cases.
stored energy term so that the power equation finally reduces to

Step applied stress, f£(t) = 1(t)

In this case the previous expression can be reduced, but
for the present purposes consider the situation up to the time

of fracture, t = t,- During this period a(t) = a_ and hence
one finds 9

at o o 3(E-1)

“c? t 3 g grp(E-1)
0 =al- / s(g)sz. DgS(5)+f —SEP ° © g(r)dt|de + 2aT

(52)

which is satisfied if the crack does not run, i.e. & = 0.
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5 3.2 - which kinetic energy effects would have to be considered
2ao T 3 2, D & .5 aZD (E-1) order to provide a limiting velocity. At the present
5 =t e 3 24,5 (o)t +.f . [ —SER __ drde #e the author has been unable to find a suitable expression
% 2 1-x 2 crp 6 o 35 3{E~-1) i ' ¥ the initial velocity and has not chosen %8 g?lve numer-
f ally. Relying on previous work however, ’ wherein an

ponential crack growth was found, one may try a solution of

where the latter integral is he form

t g _ . A (t=t )
c.o.) d = - - a(t) a(t))
g g ( ) dr ag Dcrp(o)t + Dcrp(t) Dcrp(o) = e o, 8 oy (57)
ao ao

such that .
5 342 nid substitute into the governing equation, expanding about
2a °r 3 ay € time t_, to find
=1z {D () = (D /2)}
o2 2 1-x3 CXR 9 g alt)) B (t)
o crp' o
= = (58)
=[D t - (D /2 - D
a, TPerp(ty) = (0 /21 - b

where the similarity to the property dependence in (24) may

be noted,and
§ approximation is not altogether satisfactory because for

+ 0

%c 4 T/ao
— ' o & (o) 6D (o)
1-k 3 2D, (t,) D =-__Crp (59)
G o D
The similar result for the viscoelastic cylinder is %o g
%oc 2 T/aq . . Y
— = _— (55b) hereas the velocity of crack propagation must be positive. It
1-k V2 2D (t ) -D 8 even possible that the kinetic energy term if added would
crp o g amount to a denominator addition of D_/6 which would make the

initial velocity infinite at the glasgy condition. On the other
hand for t* > t_ in the present expression such that Diyp (£%)

ﬁ (11/10)D -onfy a ten percent increase in the small vafue of
the glassy’modulus, the initial velocity is high but finite, and
decreases rapidly with increasing time to fracture. For example,
for rubbery fracture controlled principally by Dcrp(to=te—+w)

Note further that if the fracture is glassy and instantaneous

such that t0 - 0, Dcrp(to + 0) = Dg = l/Eg and from (55a)

‘oc 4 EqT # D, >> D, (usually D_=100 D_)
<-4 (56) Yo g e g’
1-k 3 a
o
%oc _ 4
o 5 = (60)
In thelgeneral case however, where ¢ 1s imposed for a given 1-k 3
flaw size, (55a) becomes the determiﬁfng equation for the time
to fracture. Given the material characterization in terms of .
the creep compliance, a curve is easily given for the fracture with a velocity at fracture of
time (Figure 1,2).,
a(ty) 30, () .
The second quantity of interest is the initial velocity = £ > 0 because D (t) =0 te1)
at fracture, A(t ). In principle, if (52) were solved for a(t) as 5De SRS

it wguld be a simple matter to determine the velocity and accel-
eration for all time, and also show among other things the time
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Some of these relations are illustrated in Figure 2.

Constant stress rate, f(t) = k't

For this loading condition, a similar calculation of the

critical stress at failure, o, = ook't,, or in terms of a
prescribed stress rate R_, such that op = R;t, yields an
implicit relation from wgich to determine to

Rc _ "o o 4 T/a,

(2/3)tODCrp

(62)

1
(o) + 2({ eDcrp(a)ds

wherein the first moment of the creep compliance may be noted.

It is interesting to note that if one assumed the stress
at failure, i.e. the circumferential stress on the inside
surface of the spherical flaw, is the same regardless of
whether it is reached by a step stress or ramp stress, then
GBC = Ogpc and upon dividing (55b) by (62), it is easy to show
that

exceeds the time to failure for a step stress, as expected.

Displacement Loading

Paralleling the elastostatic case of fixed grips, it is
interesting to calculate the similar fracture instability cri-
terion for a displacement loading at the outside boundary,
uQ(b,t). In this case, the incompressibility condition imme-
diately yields,

wlr,t) = uo(b,t)bz/r2 = (63)

uog(t)bz/r2

From the equilibrium relations one finds that the stresses are

4u 3 3 _ _
or(r,t) = S B L1 [pErel(p) g(p)] (64)
3b a3 r3
4u 3 3
b lb -1[ = -
B e, ) = B8 &8 L [pE (p) g(p) (65)
9 3b a3 2 3 rel

where Er l(t) is the relaxation modulus. In a similar fashion

as before,

u_\2/,16
- - P o\ [b 3g (t)
Q = (or ce)sr 4 5 —) 293%)

E t
r 3t gg( )

g(r)d{}

1126
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the time to failure in a constant stress rate test slightly
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om which the stored energy is found to be

1 pe t 6
'z;fb [ oat 4r r? ar = - 3 [ (%0 at
a(t)o a o
l—k3a
+ 3 [x%o] (67)
3ao a

The energy input to the system is

3fu\%/ .3 "

sk 2 . _ 4b 7o) [1l-k a}) 3g(t

ir I=>DL or(b,t) u(b,t) =t - —;gz— —;Z-—

+ OE (t=-1)
% {Eigit) o | X8h il giridn (68)
g o 3 (t-1)
while the surface energy rate is

SE/4n = 2aaT (69)

(9), one finds
£ 3Epq1 (E-T)

3(g-1)

Upon writing the power equation,

2
6 fu
a{2ar - 22 (o ftiﬂ E g(g) + [ g(t)dt|ded =0
a4 b/ o 3¢ 9 o

(70)
hich again has the stationary solution, & = 0, plus an addi-
ional one.

g(t) =

Constant strain input, 1(t)

In this case the work input is due to the e}astic'term,
after which the stresses relax to lower than their maximum
glassy values. The integration yields, for & # 0

4+
_ 4b (0 3
2aT = T({ = [u(b,£)]

a g

- 4 ¢
{L‘l[E(p) u(b,p)q dg + gg_ f+(....)dg
o

(71)

During the first integral E(p) - E , i.e. the glassy va}ue,
and during the second integral 9 su(b,£)/3¢ = 0 leaving
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g b 4 g g2 2 6
2aT = 4b_ [° (g /5 dlu?(b,£)] = 40~ . Fg¥% e 2 =| X =T/a°- z
a% o g a 2 s b 2 t22 £(2) (¢ e
o re}.( o)
from which
2 6 ' or alternatively in terms of the strain at the flaw
u T/a a
e} = Chs 3 2 /
2 T/a
b Ey b (@) =1 e | = %, -1 (76b)
a 2 t B2 (¢ )
or, at the flaw o rel o
e,2(a,t) = £ “lr/a o ia
S 4 g here one may note by dividing (76) by (72),
2 2
. u, (b) Byt /2
and because u. is a constant, a(t) = a.. Thus if during a R = 2 > 1 (77)
constant Strain test the applied displacement u, is not suf- u (b) E(z) (t)
ficient to impose immediately the critical valua correspondin € rel” o

Eo the glassy modulus, stress relaxation will occur and frac- +

fre can not result. because Erel(z) (t) <« [°f% Edr de =E t 2/2. Hence the
e o o 9@

ipplied displacement to failure in a constant strain rate test

Constant strain rate, ¢ = R t; u(b,t) = bR t = u t
—===—F ot¥rain rate
€ € tlways exceeds that for constant strain, as expected.

o
Here the second integral does contribute to give

Finally when the fracture commences, it will progress
4 u 2 t G
2aT = & . (_O) f E £ + J—E 3Erel(5 T)

roportional to the first integral of the relaxation modulus,

or what is equivalent*, to t ensile modulus as measured in
a4 b o o 3(E-1) T 9515 4 constant strain rate test.t&ﬂ:
(73) a(©)]> 282 o
4 2l 2 = 6 E t) ; t >t
- 4b U, 4 fu rel o
\4 (~) ftji E l(T)dT ac = 4L o E(Z) (t) ao (T/ao)k
a b o o re =4 \ 5 rel
. -2 (1)
a(t) 2R§ ao4 . a(t)',2 2t “E__) (6)
from which ’ = = e [ E (g)deg = €§(a't)
a 5k°T/a a o rel a J 5T/a
u 2 6 (T k6 o o} (o] o
_0) f il ad T/a , (a/b) = _ /a,) . (att) 2 (74)
b/ "~ (2) (2) a (78)
€ 2 E el (B) 2Erel (t) o
and the initial velocity can be expressed
At the fracture time t = t,, for a prescribed imposed strain 2 -1 g(1)
rate, the relation betweenofracture time and flaw size is a(to) - —1 . —h—to “rel (to) (79)
(T/a,) k6 = <3 i 10
Rf: = om0 (75) % 5to % Erel (to)
2E(2) (t)
rel'“o *
t -
Or in terms of the boundary displacement u (b,t,) = bR_t_, or e Re g Erel(T)dT i Utens(t)'
boundary strain, R ° £7Q
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Furthermore, one can calculate the circumferential stress
at the flaw, using (65), to find at failure (t to)

1
_ '1'/ao.2}3r(e (tg)

oglant ) (80)

2
2 A2,

This critical stress has been calculated as a function of strain
rate for the Solithane 113 material with the result shown in
Figure 3, which also incorporates the uniaxial tensile failure
stress at constant rate for reference.

it may be observed that the shapes of the curves are qualita-
tively similar, with the gross failure probably occurring at
longer times (smaller R ) than that for the initial flaw to
enlarge. £

MODIFICATIONS FOR FINITE STRAINS

It was previously mentioned that a finite elastic analysis
for a neo-Hookean material had been completed.(15) Since then,
the analysis has been extended to include a Mooney-Rivlin
material. The neo-Hookean results are shown in Figure 4.
It is natural to inquire if the character of the viscoelastic
behavior will change due to finite strain. Unfortunately this
analysis is not yet practical. Nevertheless, some indications
of expected results can be conjectured from the work of Smith
and Guth et al(2 on tensile specimens. It was found that for
many materials the time and strain dependence separated, with
the time-temperature WLF shift factor, still applying. Denoting
now the stretch ratio by A, (X 1 + ¢ for small strains), it
was found that

o (A, t) Erel(t) £(x) (81)

which sensibly permits an ad hoc extension of the previous
finite elastic results to include viscoelastic effects by
replacing the material modulus in the finite elastic strain
analysis by its appropriate (infinitesimal) analog. The extent
to which this idea may apply to three-dimensional geometries

is currently being investigated more completely, both theoret-
ically and experimentally.

EXPERIMENTAL RESULTS

) An experimental apparatus to generate hydrostatic t
in a rubber "poker-chip" specimen was described earlier.

783597
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: While there is no reason
for them to be identical - because of the different stress states,

(19)

Initiation and Growth

perpendicular to its faces.

ressible rubber specimen, was
ensile stress.

pecimen is loaded.
gonclude that micro-origins of

#ivlin type material
thane 113 mater:ial,(é2 it can
he initial radius of the flaw
quently traced,ao, should have
igure 5 shows a photograph of
srobable origin.

Second, when the specimen
tant strain rate, photographs
he predictions based upon the
eformation analysis (78) have

Two results are of concern to this discussion.
umall fracture loci are observed to appear suddenly
Post fracture analysis has led us to

of Viscoelastio Fracture

gically a thin clear rubber disk was cemented flatwise
tween two clear relatively rigid plastic heads and pulled
The cement bond restrained con-
yaction perpendicular to the line of pull, and developed a
ateral cross-tension which, in the vicinity of the incom-

equal to the longitudinal

Arrangement was made to observe any events
i the specimen by inserting 45 degjree mirrors in the loading
wads and providing for photographic recording.

First,
as the

the order of 10™% inch exist

in the specimen prior to loading and that fracture has ini-
tated from one of these latent flaws.
ndependent measurements of the surface energy, T, and use

f the theoretical finite strain predictions for the Mooney-
which adequately represents our Soli-

Furthermore, from

be inferred from the applied

pad at fracture as observed during the poker-chip test, that

to which fracture was subse-
been of the order of 10™% inch.
the fracture surface and

was loaded at essentially con-
were taken of the flaw growth.
infinitesimal viscoelastic
been compared with the test

ata. The variations of the cavity size with time are quali-
atively similar, both having negative curvature at small times,
ut the range of times over which the growth was observed, of
_the order of fractions of a second before the size was influ-
enced by the proximity of the specimen edge, was too small to
_obtain quantitative results at this time. The sensitive depen-
ence of the cavity size upon the fifth power of the second
_integral of the relaxation modulus indicates that it may be
_impractical to attempt much more than initial velocity or accel-
_eration measurements by the use of this specimen.

CONCLUDING REMARKS

The major purpose of this paper has been to deduce an
extended Griffith criterion for the fracture of linearly visco-
_elastic media. By use of the thermodynamic power equation it
proves possible also to deduce the time history of the fracture.
While the fracture models chosen are not perhaps those commonly
associated with crack-type fracture, the similarity in results
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among gll elastic critical stress values has led the author
to believe that the use of a uniformly growing spherical or

cylipdrical cavity will lead to representative results,
partlgularly insofar as the viscoelastic dependence is con-
Cerned.

Contrary to the initial expectations, the result did not
lead to a different value for T , but to the value T except
whereas previously a constant mddulus was used in br?ttle
frqcture, it is now proposed that a time-dependent modulus,
which must be associated with the loading history, be used.
For example, a step function in applied stress is expected to
lead to replacing the constant compliance in the usual Griffith
formulas by ZDcrp(to)" Dg, as shown for the two cases of the
cylindrical and spherical”flaws. 2.

This conclusion gives rise to an interesting fundamental
ques§1on: Is the surface tension, T, rate dependent?
cussions with physical chemists reveal that this matter is not
resolved on the pPhenomenological basis. It is particular per-
tinent because.Thomas and Greensmith(23) have shown that the
s ' : Never-

ess Fhelr results can probably be slightly reinterpreted
to show in the Griffith sense that the product ET is rate
depen@ent, with however the rate dependency arising from the
maper1§l modulus and a constant T, rather than the inverse
whlcb 1s basically their implication. As far as the analysis
herein is concerned it is a simple matter to allow for the
surface energy to vary, T = TEE)N 1f appropriate.

The results presented do not specifically extend the
anal¥51s to different temperatures, as was implied in the
earllgr discussion of brittle versus viscous behavior at low
and hlgh.temperatures, 8, respectively. The time-temperature
superposition principle, however, permits such extension if the
material representation is expressed in terms of the tempera-
ture reduced time, tr = t/ag(e).

~ In conclusion.it is hoped that it will be possible to
verlfy, at leas? within engineering accuracy, that the visco-
elastic correction for finite strain which is mandatory for

And finally, it will be essential to verify if the viscoelastic
fracture criterion based on cylindrical and spherical flaws will
hold for crack-type fracture. Such experiments in cracked sheets
have already been initiated, but the results are not available
at the present time.
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FIG. 2. Time to failure and initial fracture speed for a spherical

flaw under constant stress
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Failure stress (psi) at the spherical flaw for various i
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Figure 4. Critical conditions for instability of an initial
spherical flaw allowing for large stra,i.ns (Aa=a/a°).
W (Neo-Hookean) = E(I)-3)/6 = E(2X5+x;%-3) /6
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(b) 86 X

(c) 170 X (d) 680 X

Figure 5. Fracture under hydrostatic tensione and the fracture
nucleus at increasing magnifications.
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