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RT-16 DYNAMIC CRITERIA FOR CRACK NUCLEATTION AND GROWTH®
Je Jo Gilman®

ABSTRACT

A dynamical criterion for semi-brittle crack propagation is
developeds A moving Griffith crack causes local displacements at
rates proportional to its velocitye In the absence of plastic
flow, these cause high local stresses which cause fracture. How=-
ever, as the stresses develop they cause dislocation motion and
multiplication which produces a certain plastic relaxation rate.
This relaxation rate increases with time so the local stress tends
to pass through a maximum which increases with the crack velocity
and decreases with the local Plastic strain-rates Thus a critical
velocity for crack propagation exists for vwhich analytic and numer-
ical values are given.

If a crack does not propagate in a semi-brittle way, it may
still propagate when large Plastic strains at its tip cause enough
degradation of the local cohesion. A model for this is suggested.

Finally, a dynamical interpretation of the grain size effect
is given.

I. INTRODUCTION

Because of the observed rate dependence of fracture in elastic-
plastic media (especially for semi-brittle behavior), it is clear
that a static eriterion for fracture is insufficient, and even a
quasi-dynamic criterion is samewhat too indefinite to be satisfying.
Also, the geametry of a crack is sufficlently complex to ensure that
any accurate model will necessarily require numerical computations.
Therefore, a simplified but analytic model will have value because
it can give quick insight to the physical situation; and how it can
be modifieds Thus, the purpose of this discussion is to develop a
simple, and therefore approximate, model of the conditions that
must be met before a crack can grow in size in an elastic-plastic
medium,

A primary criterion for fracture is needed in order to direct
and bring the discussion to a conclusion. This criterion is taken
to be that the local normal stress must reach a critical value (case
of seml-brittle fracture); or that a cambination of stress and dislo-
cation density must exist such that the strength of the material be=-
cames degraded to a relatively small stress level.
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The semi-brittle case will be discussed first. Here it is
proposed that a critical stress criterion is needed in an elastic-
plastic body because this has a unique result; namely, permanent
separation of two parts of the body. Other criteria such as one
bagsed on energy alone, or one based on displacement, are not unique
because various results can follow the achievement of the critical
criterion.

The maximum stress that will be reached at small strains (the
upper yield stress) will depend on a balance between the rate at
which local displacements are imposed by the mechanical system, and
the rate at which these displacements can be accommodated by plastic
flow. If the latter effect is very small, the solid will behave elasti-
cally and will certainly break after a small amount of displacement has
occurred. On the other band, if the latter effect is large, the stresses
caused by the imposed displacements will be quickly relaxed and the
stress will not rise above a small and ineffective value.

From the above, it may be seen that the problem consists of two
parts. First, estimation of the local displacement rate and the re-
sulting stresses; and second, determination of the response of the
elastic-plastic material. These two parts will be discussed sep-
arately in turn and then combined to form a criterion. TNote that
this approach is distinctly different from the usual one of starting
with the distribution of elastic stresses, although these are implied
by the assumed crack shape.

II. DISPLACRMENT RATE AND STRESS AT (RAK TIP

Since the Griffith condition must be satisfied by any theory,
we start with a critical Griffith crack and thereby determine the
geometry of the problem. By definition in the semi-brittle case,
fracture must occur folloving a small amount of displacement, so the
shape will not change much prior to the development of the critical
conditions.

Figure 1 shows the atomic displacements near the tip of a criti-
cal Griffith crack as calculated from Elliott's solution.(l Since the
local stress at the tip of a critical crack must always equal the cohe-
sive stress, the local elastic strains and hence the displacements are
relatively invariant tovards changes of the crack length and depend
mainly on the ratio of the surface energy to the elastic modulus. We
can simplify the shape by linearizing it as shown in the figure. Then
the overall shape can be described as shown in Figure 2.

The linearized crack is considered to be in a state of plane
stress and is characterized by a length L, a depth H, and tip
angles 6 . The length is determined by the applied stress through
Griffith's equation:

2ES

L = —————%
7(1 - v)ogy?

(1)
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where E is Young's modulus, S is the specific surface energy, V
s Polsson's ratio, and o, is the applied stress. The depth is re-
lated to L through the elasticity of the material;

H = (%ﬁ) L (2)

and the tip angle is nearly inveriant (for a critical crack) with a
nagnitude of about 25°, as taken from Figure 1.

If the crack expands with velocity V., then the displacement
rate & is:

0= Vo (3)

or if only an incipient crack is present in the form of a blocked glide

band of length x and dislocation density ¢, then the displacement rate
is:

. _ . _ h.
ug = epx = bpvdx (%)

vhere ¢_ is the plastic strain rate, b is the Burgers displacement,
and Vg ?s the mean dislocation velocity.

Prior to fracture, the imposed local displacement, ut (where t
- time) equals the sum of the local elastic and plastic displacements.
The local elastic displacement is determined by the local stress o,
+hich varies with time as the instantaneous state of the material
changes. It also depends on the size of the region over which the
stress acts. This is some function of H in this case and will be
taken to be 1/2 H as a first estimate. Thus, if the elastic and plas-
tic strains are €= o/E and € ps respectively; then the local displace-
ment of the material will be:

H (o
5(g+e ) (5)
(where E is Young's modulus) so the displacement balence becomes:
= B 9%
ut = 3 (E + sp) (6)
and combination of equations (1), (2), and (3) with equation (6) ylelds:

(1l - v) OOVCBEt
g = S - Eep (7)

735



J.J. Gilman

80 the local stress at & given time increases with the crack velocity
and decreases with the amount of plastic strain that has taken place.
Also, it may be noted that it does not depend explicitly on H.

III. STRAIN-RATE EQUATION

In order to find the value of the local stress from equation (7),
it is Decessary to calculate the Plastic strain after some time t, has
elapsed, and go an expression for the strain-rate 3 ép is needed. The

€ = obpv (8)

where ¢ is a gecmetric factor, b is Burgers displacement, p is the
mobile dislocation density, and v is the mean dislocation velocity.
Following Gillis ang Gilman (2 this may be written in terms of stress
and plastic strain:

ép = b cos 2 (oy + Mcp)[v*e-ZD/G] (9)

where A is the angle between the mean active glide direction and the
principal stress axis. The term in parentheses describes the increase
?f dislocation density that results from breeding; with po being the
initial dislocation lensity, and M a multiplication coetficient.

The term in brackets describes the dependence of the mean dislocation
velocity on stress; with v* being the limiting or terminal velocity
at high stresses; D being the characteristic drag stress which deter-
mines the boundary between slow and fast dislocation motion; and 0/2
being the mean local shear stress. This rate equation applies only
for small strains because strain-hardening is not included in it, but

only small strains need to be considered in the semi-brittle fracture
case,

IV. AN APPROXIMATE ANALYTIC SOLUTION OF
THE DYNAMICAL EQUATIONS

The stress equation (7) and the strain-rate equation (9) taken
together describe the behavior of the material. As the moving crack
imposes displacement on an element of material it becomes stressed
according to the first term of equation (7). This stress, according
to equation (9), produces a finite strain-rate which results in some
plastic strain after a finite time has elapsed. This plastic strain
has two effects: one is that it tends to reduce the stress as
stated by equation ( 7), and the other is that it tends to increase
the strain-rate as stated by equation (9). In the beginning of the
process, the increasing displacement causes the stress to increase
more rapidly than the plastic flow can relax it. Eventually, however,
because of the increases in o and €5, in equation (9), the plastic
strain-rate exceeds the specific displacement rate and then the
stress begins to decrease. Thus a maximum exists in the curve of

736

R,

S T

The Dynamics of Fracture Initiation

stress as a function of time (the upper yleld stress). If this
maximum stress becomes large enough, it will equal the local fracture
stress and hence cause fracture. If it is less than this » large
wmounts of plastic flow will occur before the stress again becomes
large (via strain-hardening) and the crack will beccme plastically
blunted and then will not be able to rropagate. Our problem then is
to solve equations (7) and (9) simultaneously in order to find the
maximum local stress as a function of the crack velocity. From this,
the critical velocity required for local fracture at the crack tip
will be determined and hence the dynamic condition for growth of the
Griffith crack.

For algebraic convenienee we define the following non-dimensional
quantities:

Stress = ) = §% (20)

T(l - \))GOVCB
time = T = [ 3 1t (1)

and the non-dimensional constants:

_ Sv*Mb cos A

Cl T on(l - \))UOVCS (12)
c, = *P/g (14)

[n terms of these yuantities, equations (7) and (9) become:

Cjl=r- o (15)

™
i

21
cl(c2 + ep]e /5 (16)

“here the dot placed underneath refers to differentiation with respect

to non-dimensional time.

No general analytic solution of this set of equations exists,
but G1111is (3) has shown that a good approximate solution can be
“ritten at the upper yield point. This is the point where I > 0 and
 bas & maximum value, I %, Letting I be the reciprocal value of L%,
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the approximate solution is:

a(n + 1) eM(a - =
( ) e*(r - ancc)) =cpc, + (et - cc,) 1)

Since we are interested onl

y in the smaﬁ. A regime (large E*
:an be further approximated by letting €' > 1 and (s\ + g) + 3.,' tm;.d
ng the quadratic equation: i yields

A2 + A(Cc.C -1 - - =
(c,c, mclcz) cc, =0 (18)
which has the solution:
1 TR S
A = -B
3L B2 4 4c,c, 1 (29)

where:
B = C,C,-1 - enCC,

and for this to be consistent with
the assumption of small A, the
4C1Cx must be small compared with so that equation (19) m;y be cem

written:
1 2C.C
i & _p 173
3 L (B + ——) ] (20)
and upon taking the positive root:
- Clc3
B (21)
or:
* B
T o~
C1c3

C1C2-1 - 1LnCIC2

® c,C, (22)

We shall consider the case of iron (low-car
-carbon steel) near room
temperature. Then the appropriate physical properties ar: as follows:

b= 2.1‘8 x lo-Bﬂ

G = Shear modulus = 8 x 100 4/m® = 0.4 E
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vallz a(a-v) =2l
cos = 0.707

V*‘-' -4 x 107 a/gec

M = 1011/ cm®

2 x 108/cn?

[}

Po

n

b= 2 x 109 /en? (corresponding to yield stress of ~ 09 &/cn)

3 = 1400 ©788%/cm?

R

g = 259 = O.Lk radians

so if the applied stress is 10-3G = 8 x 108 d/cm®, the constants will
have the values:
1.33 x 108

Cy 2 v,

Q
]

s ¥ 2 x 10-3

2 x 10-3

n

C3

and if the fracture criterion is taken to be that the local stress
nust reach ¥ 9/30, then for fracture:

o* = 2Dz = G/30 (23)
and:
Z* . c.c, -zlgaznclcz s el
which can be solved by iteration for the critical crack velocity:
Vc* - 18 “/sec

and this appears to have the right order of magnitude, but no experi-
nental results are available for comparison.

Since H is about 1.8 x 10-6cm fram equations (1) and (2), the
critical crack velocity above corresponds to & local strain-rate of
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occur later because the material is weakened in local regions as a
result of plastic strain.

In order to describe the behavior at large strains, the strain-
rate equation (9) must be modified. This is done by adding a factor:

e—wE/G (25)

as the fraction of the total disloca-
ain € has occurred, or
Ve, The rate equation

vhich can be thought of either:
tion population that remains mobile after a str.
as an increase in the drag stress by an amount

then becomes:

ep = P (py + Me ) yhe (B # vep)/o (26)

There is considerable evidence that the internal damage of crys-
tals which leads to strain-hardening, also degrades the intrinsic
strength of a material. This degradation of strength at large strains
can probably be associate? with the concentration of edge dislocation
dipoles in the structure. 8) We are not concerned here with the
detailed mechanism of degradation, but with obtaining a suitable
anaelytic description which can be compared with experimental measure-
ments. If degradation of cohesion is caused by the accumulation of
dipoles, then a measure of it should be the concentration of immobil-
ized dislocations in a structure. Now equation {25) gives the frac-
tion of the total dislocation population that is mobile after a
strain e so, the expression:

P

1 - e~ Vep/og (27)

gives the immobile fraction of the total population; where the sub-
script on the stress emphasizes that this is the shear stress.

If we let o 1 be the density of immobile dislocations then a
first approximation to the local fracture stress might be:

= - (28)
S = O (1 WpI]

I = 1/W the local strength drops

where W is a coefficient, and when o
the immobile dislocation density

to zero. In terms of plastic strain,
will be given by:

or = (og + Mep)(1 - e™VoP/Yy (@)
80 the local fracture stress is:
98 = gon [1 = Wloy + Mep) (1 - e7Vp/%)) (30)
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and it gradually decreases to zero with increasing plastic strain.

] may ot ha i pe the (e]
n the
AlSO it be n ed t t t de nds o t value of he local

VIII. DYNAMICAL INTERPRETATION OF THE GRAIN SIZE EFFECT

In polycrystals the fracture stress is inversely propor
the square root of the grain size(9s ; and for large grginpsiztgnza2:me
follows yielding after very little plastic strain; whereas for small
grain sizes fracture does not occur immediately after yielding even
though microcracks as large as the grain size appear upon yielding.
These observations have often been interpreted in terms of the stress
concentrations that dislocations can produce at the ends of glide
bands. However, as was mentioned here in the introduction, stress
alone is not a criterion for fracture because it produce flow in-
stead. The author pointed this out sometime ago&?ﬁ and proposed an

alternative interpretation of the grain size ef
alternative 1o gr fect which will be

A dynamical interpretation that is consistent with all of the
experimental results of grain size studies can be based on the fact
that a moving crack will be slowed down considerably upon crossing a
grain boundary. If the misorientation of the cleavage plane in the
next grain is small, then the crack can cross the boundary, but will
necessarily acquire many cleavage steps. If the misorientation is
large, the crack will have to propagate discontinuously by starting
a new crack in the succeeding crystal. In either case there will be
a sudden change in the energy absorption as the crack crosses the bound-
ary and this will reduce the crack velocity. If the velocity is reduced
to a value below the critical propagation velocity, then the fracture
process will stop and will not continue until the stress is raised and
a new crack starts. On the other hand, if the crack is moving fast
enough, it will have enough kinetic energy to bridge the grain boundary
and keep moving at a reduced velocity. Thus, it is proposed that there
are two critical crack velocities in semi-brittle polycrystals. First
a crack must have a certain velocity in order to propagate through an ’
individual grain, and second, it must possess a somewhat higher velo-
city in order to break out of the grain and cause fracture of the ag-
gregate.

This interpretation is not concerned with the mechenism by which
a crack is nucleated. It simply imposes the critical velocity condi-
tion in addition to the Griffith condition on the nucleation process.
The picture is, that, in a manner that remains obscure, plastic glide
nucleates cracks, these then grow until they reach grain boundaries,

where they either stop or continue pro
pegating, depending on whether
or not their velocity exceeds a critical value: e

The velocity of a crack, as shown by Dulaney and Brace(9) is
given by:

Vc = Vt (1 - LO/L) (51)
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where Vi is the terminal velocity, L is the instantaneous length,

and Ly is the critical Griffith length as given by equation (1) for

Lhe plane stress case. The velocity of a crack when it reaches a
yrain boundary (where L = A = grain diameter) will depend on the ratio
lo/A which is:

L /b = K/a,%b (32)

Thus 020A must have a critical value in order for the crack velocity
to have a critical value, and the fracture condition for an aggregate
becomes :

se ~ [1/A)l/2 (33)

IX. SUMMARY

It is pointed out that except for reversible conditions, &
statie criterion for crack nucleation or growth is inadequate be-
cause the concentrated stresses at the crack tip will relax with
time.

Plastic flow is the most impor tant mechanism which can cause
rapid stress relaxation so its effects are considered in some detail
with the aid of a simplified model. In this model a moving crack
causes local displacements at & rate proportional to its velocity.
These displacements result in local stresses which rise to values
high enough to cause fracture in the absence of plastic flow. How-
ever, the stresses cause dislocation motion and multiplicetion which
produces a certain plastic strain-rate. With time this causes plas-
tic displacements tending to relax the local stresses caused by
the moving crack. The local stress thus passes through a maximum
salue that increases with crack velocity and decreases with strain-
rate. The occurrence of crack propagation, or of plastic blunting,
thus depends on the crack velocity and a critical velocity exists
above which propagation occurs and below which blunting occurs.
Analytic and pumericel estimates of this critical velocity are
presented.

If a crack does not propagate when it is first loaded (or
created in a stress field) it may become unstable later when the
plastic strains at its tip reach criticel values. That is, it mey
occur after large strains have caused the local cohesion of the ma-
terail to become degraded by & high concentration of stored defects
such as dislocation dipoles. An analytic description of this process
is suggested.

Finally, it is shown that the grain size effect observed for
polycrystalline aggregates can be interpreted best in terms of the

dypamics of crack propagation.
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LINEAR CRACK

ELLIOTT'S CRACK

a=25A
CRACK LENGTH = 2 x103a

ELASTIC MODULUS = 5 x 10" d/cm?2
SURFACE ENERGY = 10® ergs/cm? B
CRITICAL STRESS = 5x 10°d/cm?

Figure 1

Atomic Displacements Near the Tip of a Critical Griffith Crack
According to Elliott's Solution

— T —»d

Figure 2

Linearized Critical Crack of Length L, Depth H, and Tip angles 9.
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