A-21 THE INFLUENCE OF ELASTIC ANISOTROPY ON THE
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ABSTRACT

The model of a propagating crack introduced by Craggs for an isotropic
solid is extended to the case of general elastic anisotropy, The general
theory for propagation under tensile or shear stresses is derived, As
for most two dimensional problems in anisotropic elasticity the solution
involves the roots of a sixth degree polynomial so that it is necessary to
proceed numerically at-some stages,. - A computor program has been written
to do this. This is used to show that the shape of the square cracks
which are produced in the interior of silicon-iron by the internal pressure
of electrolytic hydrogen may be due to elastic anisotropy.: On this basis,
predictions can be made as to the shape of cracks in other metals, in par-
ticular molybdenum, vanadium and tantalum,

1. INTRODUCTION

In this paper the model of a propagating crack which was introduced
by Craggs (1) for the case of an elastically isotropic medium is extended
to general anisotropy. A partial extension has been given by Atkinson
(2) for the case where the crack front is perpendicular to a symmetry
plane of the medium, This is the greatest degree of anisotropy for
which it is possible to obtain ex plicit solutions but it is still very
restrictive, e,g. in a crystal of cubic symmetry the crack front must
be along a crystallographic direction either of type $ 1002 or (110}..
In the analysis given here for general anisotropy(§ 2-7) it will be noted
that at an early stage (equation (6)) we require the roots of a sextic
polynomial, Since these cannot be obtained explicitly, any application
of this general theory must of necessity be numerical, However it is
reasonably straight forward to program the necessary computations for
a computor, A Fortran program was developed to obtain the numerical
results presented in § 9 where this theory is used to explain the shape
of cracks produced during the hydrogen charging of silicon-iron (3) and
predictions are made of the shapes which might be produced if the ex-
periment were repeated on other metals,
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2. MATHEMATICAL SPECIFICATION

) -Fpllowing Craggs (1) we consider an infinite elastic solid with a semi-
infinite plane crack propagating through it with constant speed vi. The
crack extends over the half plane x5 =0, x; < vit where t is the time,

The crack front is parallel to the x_ axis and the elastic state of the body

is independent of X3. The crack is propagated by surface tractions P,

distributed uniformly over a distance a at the rear of the crack front and
the work done by these surface tractions is equated with the work done in
creating new surface of surface energy §. The medium is of general
elastic anisotropy and part of the analysis is a generalization of the
static cases considered by Eshelby et al. (4) and Stroh (5).

3. ANALYSIS OF MOTION

The stresses G‘ij are related to the elastic displacements uy by the
equations
9 Uk
(1) o—‘l - CiiKl X;
where i,j,k,1 =1 +2,3 and the convention of summing over a repeated
latin suffix is used,

We also have the Symmetry relations

(2) Cisk1 = Cjixr = Cijak = Craij

where the Ciik] are the elastic constants,
The equations of motion are
) 90i;
aX; 3 t2
where P is the density,
Substituting (1) in (3) gives
U Ui
(4) Cijke K _pd Ui
IX13X3 ot*
The Cijkl as given above are the elastic constants of the material
referred to the axes (x1, X, x3). These can be found in terms of the
elastic constants referred to the Symmetry axes of the crystals by simple
formulae for the rotation of axes,
We now assume that up is independent of X3. Also, because we are
considering the Steady motion of a crack, we make the substitution X =
X{ = vqtin (3), and write

Oi5 = 073 (X, Xa)
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for the stresses, Then

3"_ 2
2t = Viax
o 2
axp — ax*

We write

Uc= Arf (X +Txz)
as a solution of (3) provided the constant vector A satisfies the equations
2 2
(5) ( Cizk1 - PV Sik + TCirke + TCizka + T Cizkz) Ak = 0
where i = 1,2 or 3 and summation is over k by convention,

Values of Ay # 0 can be found to satisfy these equations if T is a root
of the sextic equation

(6) ICEIKI —FV.ZSixfT(C,-me.'m)+ T’Cizxz l =0
We can rewrite this as

(7) [ A -fv2I| =0

where A is the matrix

( Citk1 + T(Citkz + Cizk1) + T2Ci2kz)
and I the unit matrix,
Referring to (1), we start with the tacit assumption that only imaginary
roots of (6) are applicable and expect to verify this later,
Under the above restriction, (6) will give us three roots (with positive

imaginary part) Ty(®=1,2,3) with complex conjugates Ty, the corresponding
values of A} found from (5) we will call (following Stroh) Ay and A,
We then write the displacement as

(8) Wi = 3 Ak fo (2) ¥ 2 Aka (2

where Zg = X + Tyxp and K goes from 1 to 3,
From (1) we write the stresses as

SUK i 9 Uk
iy = Ciskigy + Cijke 5

Substituting from (8) we have
(%) %3 = 2 Lijafu (2 + 3 Tige £ (2)
where
Lisa=( Cisir + CijrzTa) Ak

and dashes denote differentiation with respect to z,,
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4. BOUNDARY CONDITIONS

On the surface X3 = 0, over the cut -00<X £ 0, we are given

Oi2 = SI (X)
(10) O0n = §, (x) —00 < X<D
and 023 = 33 x)

R&iz, Rozz, Rozs > 0
1
R ={x*+ xf}z—-)oo
where X = xq - vqt,
The functions 81+ 82 and gy are assumed to be differentiable any number
of times except perhaps at a finite number of isolated points,

as

5. SOLUTION OF THE PROBLEM

We consider the semi-infinite regions x5 0, x,< 0 separately,
In x5 > 0, we can write as the expression for ug which remains finite at

infinity,
(11) Uk = 2R1 ZAK«[ F:(ﬂ)exp(iﬁ&)dﬁ.

This is seen to be an expression of the form (8) and hence is a solution
where F{'(B) is an arbitrary function,

The stresses are

(12 oy = 2R1 Y Lija| iBR®) exp(isz)dp

For x,< 0, we write

(13 o5; :QRIEL;jaf“iﬁﬁ:(ﬁ)exf’('iﬂzﬂ)dﬁ

and a similar expression for uj, where Eg () is an arbitrary function,
We have now to relate the solution in the two regions, For the part

X5 =0, X>0 the material must be joined together, and the boundary

condition on the stress is then that the components0jy should be continuous,
The region X< 0, x5 = 0 is already specified by the boundary conditions,
Equating (12) and (13) when x2 = 0, we have

(14) ; L,'QotF;(ﬁ) = ZE.’T@ =Y (8) 5 say.

Solving the equations (14), we obtain
F (8) = Maiz i (8)
Fd_(ﬁ) = Muiz Yi2(8)

(15)
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provided the Li are independent,
Substituting in equation (11) we have for x2> 0

(16) UK=2R1gAK«Maizj:olPiz(g)exP(iﬁzd)dp
and for Xy <0 oo
(17) Uk = 2R1§AWMMZJ Wia(a) exp (~i ) Af.

Subtracting (17) and (16) we find that the difference in displacement on
either side of the plane x = g is

(18) Al =-2iBus [ (W@ 0-Fa® epcipo) | 48
where
(19) Bkiz =';—iZ( AKuMaiz—mMTiz),

Outside the crack the displacement must be zero so for X > 0 we
have since IBy;o| # 0

0 r{ Wiz (8)exp (i8X) ~Wia (B)xp (-i8X) } dB = 0

Substituting for (15) in (12) we find the stresses in the region x5 > 0
to be

(21) O’Kz=2RlZL’.K2aMMZJ i\P;Z(ﬁ)BexP(iBZa)O{#.

On the surface of the crack for X <0 the stresses are given by (10)
which we call -\ (X) for brevity,

Then from (21) we can write for - ee<X < 0, x2=0

@) =Te(X)= 2R1 i [ Cutia(s) B exp (i6X) dp

where Cyy =§ Lyox 1\’&12 is independent of B,

From (14) and (15) we have
Z LizdMaj2 = 3ij
Cki = Ski

Thus
and (22) becomes

@ 1) = [ 8 [ e (18%) - VB en Ciox) ] de
8 - < X<0

If in the above we had made the assumption that the crack opened
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Symmetrically we could have solved the problem by a straightforward
géneralizationof (27, However, it seemed wisest not to make such an
assumption even though it turns out that we obtain the same result,

We thus have to solve the dual integral equations (20) and (23) which
we do in Appendix 1,

Furthermore, in our subsequent analysis we specialize to the particular

problem considered in section B of Appendix 1, i.e, we take
(10) Mk )= P« —a<X<o

=0 = e X'C-8
where Py is a constant,

6. EVALUATION OF THE STRESSES AND RATES OF CHANGE OF
DISPLACEMENT

It is now possible to substitute equation (xvi) of Appendix 1 into
equations (16), (17) and (21) to calculate the displacements and stresses,
However, our main purpose here is to calculate the energy associated
with the moving crack so we calculate 24s,

2t
From (16) for x> o

(24) %ﬂé—"=—\/,%L)%‘=~2R12iv.AmMo(izrﬁ‘{’,-z(ﬂ)cxP(iﬁi’a)o\ﬁ
(* o

The integral
J, BYa(Brexp(ipz)dp =

(25)
. + - —u2.
iy i o o _iB(a-Ui+ 24
S B [tortmmagti [ apa

where z, = X + Txxo.
The imaginary part of T being positive (see section 3), then

[Zap Texpliprdp = aret ™tz ©

and . . 1
) elﬁ(a“i'*zu’ dﬁ _ 61,'"/4 ‘n’é_(a—u2+z,,) 2
Thus B p* &
AT o 4B (a-utrZy) i L Adu
o) | | Sy dpdu= e 47“L G-ws Z)F
' L
etiWay= a*rizd _ in
= : 103 ﬁ(aﬁz)z - 2
Thus we can write
€L
@7)  Hux i Vi Ak Matiz P, ( %~;z‘,2) . 2ia*
Tt:—RIZ - log %*TZ}E +’W—?
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for xo >0,

We obtain the same result for x2< 0, so we can infer that the crack
opens symmetrically,

When X ¢ 0 and Xp = 0, we write U= -X then (27) becomes

@) Jew ZHp, [1g(22h) 2+ b |

where R
(28a) Dk=iVi ; P (Ako( Muiz — Axa Mdiz)
Ex=-w 2 P (AwMuiz + A Muiz) |

7. THE CALCULATION OF THE ENERGY

The rate at which the external forces do work is

(29) W = S: P [%])ﬁzo dX

Replacing -X by T and substituting (28) in (29), we find after
integrating, that

(30) W = %‘{HQEKPK_ZQDKPks

Using the energy criterion of Griffith [6] in the same way as Craggs [1] ,
we equate the rate of loss of mechanical energy at the point X = x5 =0 to
the rate of increase of surface energy of the material, which is 2v1 ¥ where
¥ is the energy per unit area of the surface, giving the resulting equation

(31) 2WY = a { %DKPK‘ EKPK}

8. APPLICATION TO CRYSTALS OF CUBIC SYMMETRY

In the remainder of the paper we apply the preceeding general theory to

the case of a crack under internal pressure propagating through a medium of

cubic symmetry on an arbitrary fracture plane, The elastic properties
of a cubic crystal can be specified with respect to the cube axes by three
independent constants, The three which are usually tabulated [7] are
either (cqq, Cyp7 C 44) or (s11, sq0, S44) but it is convenient here to use
(A, B, c44) where

_ 2Cyq
e} A= Cn—=Ciz

is Zener's anisotropy ratio (8) and
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(33) B = _C%MZCE

is the ratio of bulk modulus to shear modulus,

Since we are only considering an internal pressure the components Py
and P3 of the surface tractions are zero., It is convenient to specify
the pressure P2 in non dimension form as

69 pep/(YGe/a)t

and the non dimensional velocity of the crack as

65) V= Vi/(Culp)*

where the denominator is the shear wave velocity along a cube axis,
The governing equation (31) can then be written in the non dimensional
form

G6)  p*= - H(V,A,B)

where H is a function of the non dimensional quantities V, A and B and also of
course the orientation of the crack plane and direction of propagation with
respect to the cube axes,

In general, H can only be found numerically but its general form is
illustrated in Fig, 1, which is for the specific case of a crack in iron
propagating on.a {100} plane with the crack front along <1002 ., This is
similar to that found by Craggs| 1] for an isotropic medium. It will be
seen that the pressure necessary to propagate the crack falls as the velocity
increases, To interpret this physically we must also consider the regulation
of the source of the pressure, If the velocity of the crack increases then
the pressure will be supplying energy at a greater rate and in general the
pressure will fall, as suggested by the dashed line in Fig. 1, This would
give stable propagation at the velocity corresponding to the point of inter-
section in Fig. 1,

9. CRACKS PRODUCED BY HYDROGEN CHARGING

Gell and Robertson[ 3]have examined the cracks produced in a Fe-3%
Si single crystal by hydrogen introduced into the crystal by electrolytic
charging, They observed cracks on the usual {IOO} fracture planes with
the unusual feature that these cracks were very nearly square in plan with
the crack front running along the 110> directions in the fracture plane,
They deduced that the crack had grown intermittently and that the crack
had remained square during several cycles of growth and quiescence, They
suggest that the reason for intermittent growth is that the crack starts to
spread when the hydrogen pressure in the crack equals the stress necessary
for propagation in the Griffith criterion, but the crack soon stops because
the hydrogen pressure will fall as the crack grows and further growth must
wait for the diffusion of more hydrogen through the iron into the cavity of
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the crack, From the square shape of the crack they conclude that the
easy directions of crack growth must be {100> and that <110) directions
are most difficult so that the crack is outlined by the latter.
We suggest that the easy and difficult directions of propagation may be

determined by elastic anisotropy and apply the preceeding theory to
explain the shape of the cracks observed by Gell and Robertson and predict
the shapes which would be observed if the same type of experiment were
repeated on other metals, It is obvious that the hydrogen pressure is a
driving force which is very poorly regulated and so it would be expected
from Fig, 1 that the crack velocity would never be a large fraction of the
velocityof sound, From Fig. 1 it will be seen that even for V= 0,3 the
necessary pressure is almost equal to that for V = 0 and it is convenient
just to consider the pressure necessary for a vanishingly small crack
velocity. This pressure is shown in Fig. 2 as a function of the orienta-
tion of the direction of the crack front in the 100} plane for both iron
and molybdenum. Only the variation over 459 is shown inFig. 2 since due to
the four-fold symmetry in the {100} plane, the other half quadrants would
show the appropriate repetition of Fig. 2, This is the non dimensional
pressure and the surface energy ¥ in (34) will be the surface energy of the

100} plane, It will be seen that for iron the <110 direction is indeed
the direction which needs the greatest pressure to start propagation but
that for molybdenumthe situation is reversed so that similar cracks in
molybdenum would be predicted to be squares bounded by <1002 directions
as indicated in Fig, 3,

For two directions in the {100& plane an explicit expression follows from

the analysis of Atkinson (2), These are for the crack front along <100)

1
BT H(v=0,A,8) = 201+AB)/ {A(4+ABXAB+3A+1) |

and for the crack front along <110 L
3A(AB+3Bt4 )@ +AB—2)}

38 = =

8} H(v=0,4,B) {<AB+3A+|)(Q+AB+6A~2)

where

1
(39) @={(AB+4)(AB+3A+!)}2

and the corresponding pressures follow from (36),

In contrast to iron and molybdenum which have a { 100} fracture plane,
vanadium and tantalum fracture on a {110} plane. For these two metals
Fig. 4 shows the pressure (for zero crack velocity) as a function of the
orientation of the crack front in a 110} plane. To convert these to true
pressures, the surface energy of the {110} plane must be used in (34),
From this we can predict that cracks formed by hydrogen in vanadium should
be bounded as far as possible by <100> directions and for tantalum by <110
directions, This leads to the conclusion, shown schematically in Fig, 5,
that the cracks in vanadium on a {110} plane should be elongated in a <100
direction and cracks in tantalum elongated ina <110 direction,

As for the {100} plane, there are explicit expressions for cracks on the
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{110} plane, For a crack front along <100 , His the same as given APPENDIX I

in (37), For a crack along <110) !

" _ [ 3A(AB+3B+4)(Q+ AB-2) r
) hkeVe=e; i )= (AB+4)( QA +AB+6A—2)

with Q given by (39), In addition there is the {111)> direction in this plane,
Although this is not a direction which is perpendicular to a symmetry plane
and therefore is not covered by Atkinson (2), it is a direction of three—

fold Symmetry and a small extension of the analysis of a dislocation in a
<111 direction by Head (9) gives for the crack in the <111’> direction

2 i
(+1) H (v=0,4,8) = | 4 (2A+(B+1) }
(AB+A+2B+)1)(AB+3A+1)

From these explicit results for the three directions of high symmetry of
a cubic crystal, some idea may be gained of the effect of elastic anisotropy
on crack propagation in other cubic materials for which elastic constants
are known, However it would seem wisest to extend this (by numerical
methods) to a coverage of a range of orientations of the crack front so as
to reveal any latent peculiarities, One example of this can be seen in
.Fig. 4 for vanadium for which the most favoured direction of propagation
1S non crystallographic at~70° from {100> . 1t is true that the symmetry
of the crystal requires, on both the {100} and {110} planes, that the
100> and 110> directions are extremes but it is not necessary that these
are the only extremes, nor that one must be a maximum and the other a
minimum,

Electrolytic hydrogen charging as used by Gell and Robertson appears
to be a very useful tool in the study of the fundamentals of fracture, It
has some unique fractures which would not be easy to duplicate, The
fra}cture is internal so that the fracture surface should remain clean,
]:)elng in contact only with hydrogen gas., The stress systemis a simple
internal gas pressure although the actual pressure is not easily measured,

A, SOLUTION OF THE INTEGRAL EQUATIONS

The equations to solve are

O ) (Y ®explipn)- Viz(9)exp(-isX)[dB=0  for X >0

(i1) i-(.,mP | iz (8) exp (iBX) = Wiz (8)exp(-iX) }dg =—T7 (X) for X<O,

Differentiating (i) with respect to X gives

@ —_—
(iid) i L B {\J/;Z(B)exp( ipX)+ Wiz (p) exp (—;px)} AB=0 for X >o.
In (ii) replace X by (X - ), multiply through by an arbitrary function
N2(5) and integrate over S from 0 to oo, Similarly in (iii) replace X

by X +%, multiply by N{(5) and integrate over 5 from 0 to oo, (ii) and
(iii) become

i f B { W epipoma s ~Hiz@®exp (-ipx)La (8} 4B
=~ (M (X=5)Na(®dS  for x <o

and
i Y MO T V@ P CBOL @} s -0 s x 30
respectively , where
Ma(®) = [ Na($)€1#5 ds
) L:g)= " Na(9)€"Pas
MB)= 7N (s €T Pds
L= N (s e Pas

©°
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where K is a constant, we can rewrite (iv) and (v) as
(viii) i fﬁ { Y2 (8) exp(ipX)Mi(B) + m exp (-ipx) L1 (B) } dg
0 X>0
- { T RN 45 X <o

We have the well known results

J S"ic:tl$ﬁd§ . C‘“"/"' H—z'-ﬂ—;— B>o0
(ix) Jm g—{‘etiSpo{s _ 261;1[/4__”_-;-6_%: 8>o0
so t_hat
[ g TeiSPs = i IgE 8>0.

Thus choosmg

Ni(§)= 9‘%, Nz(5) = 9‘%

we have

(x) Ma() = €MATEE S Mg - e+'"/4 i

i B A v il
L. (8)= e"™orres 5 L () = € kg
Equations (vii) are satisfied if we take k = -i so that

L—i(B) b Ml(ﬂ) .

Then equation (viii) becomes

) 7 B {Xalp) exp(ipX) + Xoal@) exp (—i18X)} A8
0 X >0

—J:of}(x—s) S24e X <0

sz(ﬁ) = q’kz(ﬁ)M'(ﬁ)-
Xk2(B) = XK + 'X

‘
where X, , XK are real functions, the left hand side of (xi) becomes

728 { i (B) cospX — X (B)s.npx}dp

thus we can find X; and X by the Fourier inversion theorem.,

where

Writing

B. A PARTICULAR PROBLEM

Take k(X)) = P« —4<{X<o

388

The Influence of Elastic Anisotropy on the Propagation of Fracture

where Py is a constant,

Then 0 0 —eo {X<-a
FK(X"@)Nz(;)ds = ZPK(X‘fa)‘ZL _a<x<o

so applying the Fourier inversion theorem to equation (xi) we find

B - —}Ho Ped X +a)* cos X dX
-4
BX®) = - (" pe(X+a)® simbX dX .

After a simple change of variable these integrals can be seen to be
the standard Fresnel integrals, the solution of which is given as an
infinite converging series; however as we are primarily concerned
with calculating the rates of change of displacement in order to calculate
the energy associated with the moving crack we can avoid them by a
change in the order of integration. -

We can rewrite equations (xn) as

(xii

XL (8) = -l (IPK;;/’;ﬁa _ IPK;ZBQ )
(xiii) ;
" z i T PxcosB
where s
I-= Jpza cosVidv
St
T =I sinvidVv
(xiv) aﬂ_La.l_
I+7] = ["Tevdy
0

L {
ﬂ’a"__- 2 47 _jpuz L
I-iT= [ TeVav = [T e™ptau

are the Fresnel integrals, and equations (xiii) are obtained from (xu)
simply by integrating by parts and changing the variable of integration,

Also
sz(ﬁ) = Xk(ﬂ) + 'lXK (ﬂ)
Thus = 1""(2(3) M. (8).
(xv) ‘l"/4- N
Y (8) = ——'I— B=Xka(8),

From (xiii) and (xv) we have'
U =+ P4
. - @
i) el - e f p | T C (1
T-T= B p¥ )
which is the solution of the integral equations given in terms of Fresnel
integrals,
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Fig. 3 Plan of crack shape in iron and molybdenum, Fig. 4 Variation of pressure with orientation in a

{110 } plane for vanadium and tantalum.

[ioc] —

]
.

\

Fig. 5 Plan of crack shape in vanadium and tantalum.
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