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ABSTRACT

Two isolated crack Problems are studied. The first is a slit under
anti-plane shear and the second is a penny-shaped crack. 4 Tresca yield
condition is used in both cases to ensure that all stresses are bounded.
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1. INTRODUCTION

Solutions to many two- and three-dimensional crack problems in
classical elasticity theory are well-known and are generally found by
means of techniques developed for axially symmetric potential problems.
A very extensive summary of such solutions is given by Sneddon [1].*
Recent work such as that of Collins [2] has considered the more
difficult asymmetric crack problems.

The solutions that are derived from potential theory alone have a
fundamental difficulty, that is, although the displacements are finite
at the edge of the crack, the stress there becomes infinite., This is a
clear violation of the requirement in elasticity that the stresses remain
bounded. One method of coping with this problem is that of Baren-
blatt [3]. He postulates a system of stresses existing at the edge of
the crack that inhibit the occurrence of infinite stresses there. These
he calls "cohesive stresses" and he develops a universal constant called
the Modulus of Cohesion to define the stresses. He specifies these
stresses as a local phenomenon occurring just at the tip of the crack,
and their magnitude is just sufficient to cause the usual singularity to
vanish. This method is largely restricted to the class of brittle
materials.

Dugdale [4] proposed another method for removing this singularity.
The requirement is made that near the edge of the crack a plastic yield
condition is satisfied, The region over which yield occurs is determined
by requiring that the stresses remain finite everywhere. Solution to
another such problem is given by Hult and McClintock [5]. The approach
of these authors is based upon methods appropriate to the elasto-
plasticity. The condition of plasticity is satisfied on the plane normal
to the crack. The problems studied here are two-dimensional or anti-
plane problems,

Bilby, Cottrell and Swinden [6] have considered the same problem
from the standpoint of the theory of distributions of dislocations. 1In
this paper a calculation is made of the length of the plastic zone needed
to accommodate a given plastic displacement at the root of a notch in a
uniformly stressed solid. A later paper by Bilby, Cottrell, Smith and
Swinden [7] considers the behavior of an infinite array of cracks subject
to a uniform stress at infinity. The purpose of this work is to show the
relation between the results of England [8], England and Green [9] and
Collins [2] and those of Bilby, et al. [6,7]. It will be shown that one
can transform the solution of a crack problem with the required plasticity
condition to obtain the distribution of dislocations for the anti-plane
and the penny-shaped crack.

2. ANTI-PLANE STRAIN PROBLEM

The equivalency of the two approaches, the method of continuous

*
Numbers in brackets refer to references listed at the end of this
paper.
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distribution of dislocations and Dugdale's application of classical theory
of elasticity, is shown by the anti-plane strain problem (Figure 1), For
this problem the boundary conditions are the following:

oy =& y=w
'ryz-O y=0 (|x] <e)

Tyz'k y=0 (c < |x| <a)

w =0 y =0 (a < |x|) (1)

where R is the shear stress at o, and k is the yielding shear stress of
the material, and w is the displacement in the z direction. The problem
can be reduced to

g~ O y =
Towan.o B y=0 (x| <¢)

-ryz-k-l y=0 (c < [x] < a)

v =0 y=0 (a < |x) )

by subtracting the uniform stress R. The above problem can be solved
easily by use of the potentials introduced by England and Green [9] and
later used by England [8] for general solutions to anti-plane strain
problems. The solution is

Ox = cy - o, = cxy =0

- _' =
Ty T I Tyz =W Q°(2)

2w = (z) + 6(;) (3)
where
a
Q(z) = { -&&t%
o (£-t3)
t
P(t) = %5 I fgx!dxs
o (t3-x3)

b f(x) = - (7 (|x| < a) 4)

yz)}"‘)

The quantity which is particularly important is w at y =+ 0 and |x| < a,
It follows from equations (3) and (4) that

a
. *I F(t)dt

=30
ol CayE 7T EOM < &
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From the given boundary conditions (2) and equation (4), we have

F(t) = ¢t R/ , (t<e)

F(t) -T% [R sin™(c/t) + (R-k)cos™ (c/t)] , (cstc<a) (6)

There will in general be a stress singularity at x = 5, 170 remove this
singularity we put

F(&) =0 (7)

which leads to the following relation between the applied stress and the
8pread of the plastic region:

g R/k = cos~c/a (8)

Equation (8) agrees with the result of Bilby, Cottrell and Swinden [6] who

approached the same problem by the continuous distribution of dislocations,

In our method the distribution of dislocations, Uy, Which is the 1line

density of dislocations lying along the z direction with the Burgers vector

in the z direction is defined as
- ’ o ’
=Sl MU T )
since the plastic displacement is defined as
a
J'x Tadx = (W - (o (10)

Substituting (6) into (5) leads to

k -1
(V)y_0+ = - (V)y_o- - [(x + c¢)cosh ( 'c peead ) -
- (x - c)cosh™? : '_"x + n, )] (11)
where
m = (a®- c3)/a
n=c/a,

The above result agrees also with Bilby, Cottrell and Swinden's result by
use of (10). According to Bilby, Cottrell and Swinden, the equation (8)

defines the plastic domain, a/c, as the function of the applied stress R.
The critical plastic displacement at the root of the crack sufficient for
fracture is determined from
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g8 _bc -1[1_(2 2)] (12)
ka mwa cosl AN c
where
a
J.assdx=§
c
and ’crit is chosen as order of 10"3a., The smallest applied stress which

gives the value of c/a satisfying (12) is defined as the critical stress

- for fracture, It should be emphasized here that our theory is completely
- #quivalent to Bilby, Cottrell and Swinden's theory,

3. PENNY-SHAPED CRACK

It is easy to extend the theory to the three-dimensional case, Under

pVan applied tension T in the z direction, a plastic domain is accumulated

in the region, c < r < a, of a penny-shaped crack which has a radius ¢

. (Figure 2). The crack is defined by having its center and axis coincide

with the center and z axis of a cylindrical coordinate system (r,0,2).

‘ Dugdale's hypothesis requires the condition

= Z = @
o, =T

= = = =0 0<r<ec)
T2 " 0zr " 0qg 9 z (
1 = = z =0 (c<r<a)
7 O, o) =k

- = = z=( a<r) (13)

Ozr S0z "W =0 (

The above problem reduces to the following:

= Z =@
L% 0
o =-T z=0 (0<r<ec)
z
1 - =k - 2 = 0 <r<a
70,0 =k-T/2 (e )
w=0 z =0 (a<r)
= = =0 (14)
ozr cze 0 z

The justification that %Q:z- ce) gives the maximum stress in Tresca's
yleld condition will be proved after the solution has been obtained., The
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above problem (14) can be solved by the method employed by Collins (1962),

The solution is expressed by a potential function g, (a“’ )z o - f .&)Lt% (0O<rs<a)
(e2-2)
-0, , P
%z az"‘+zaz" =0 (a<rca)
- _y ) J z Py Foy _1d Fre)ae
% (1-2v) +raraz az2>z=0 rdf—i—g—% (O<rs<a)
o (r?-t2)
= —aiL r
Oge zaraza <.§% - =-1;j ——(-)_tftd; (Osrsa) (19)
o (rP-t2)
O - % Sg%fi The conditions in (14), therefore, lead to
d f(t)dt
g 3@ _\} 14 __(_)__ -T (r < c)
e iRt fRes g o (e
i 3 QQ _JE _ Q- 2v! d f(t)dt 20
2w 2(1-v) = aza (15) { J‘(r’c"‘ } (c<rc<a) (20)
where The function f£(t) can be determined from (20) as
a
%‘E - 12—1 f(t)[r’+(z+1t)a]-¥ dt JEE) =Tt (0<t<e)
-a
. . Teey=1e- —(_)_4“'1 1+20)1 {2y . 3o 2l ccrcay q
% - 2—1 f(t){z+it+[13+(z+1t)3 ]3‘} [:3+(z+1:)3]"’ dt
-a It is now seen that ~07 - oe) is the maximum shear stress, since by using
£(t) = - £(-t) (16) (21), (19), and (15), we have at z = 0 (c < r < a)

o,- 0 =2k - T

The unknown function f(t) in (16) can be determined by the second and 9

third condition in (14) by using (15) and (16). Since we have

X & x 0T = 2 = T - {2k-(1420)] } <
lim [1‘+(z+1t)"] lm [PP+(2-1£)2]% = (12.¢3) (r>t) 17)
z - z-0
o= 0p = {2k-(1+2\;)—} € (22)
and
The relation between the plastic domain and the applied stress can be
lim [PP+(z+it)3 ]* = —1im [l’+(z-it)3]¥ = i(t:‘-r"*)}k (t>r) (18) obtained from the condition
z-0 z=-0
f(a) = 0 (23)
the derivatives of @ a8 z = 0 become
which is a requirement that the stress singularity vanish at r = a. The
above equation leads to
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a-2v) (L %

Equation (24) is shown in Figure 3, The similar result (8) for the slit
under anti-plane shear and the result for infinite array of slits which
was obtained by Bilby, Cottrell, Smith and Swinden [7], are also shown for
comparison. It shows that the case of penny-shaped crack needs the largest
stress for a given value of a/c. The reason is that the penny-shaped crack
receives the largest constraint from the matrix,

The distribution of dislocations which are running in the 9§ direction
with the Burgers vector in the z direction can be defined as

g = (& Dema = (3 i 25)

and the plastic displacement as

a

Ir aezdr > (w)z=0+ - (w)z-O‘ 58)

The displacement w can be obtained easily from (15), (19) and (21) as

2u,(")z=o+ . 2“(“)2-0-
PR e i (EY R

%
¥ _ 4k-(1420)T [ 12 (£2-c2) ;
= T(aa-ra) - (1 '2\’) [ J‘!‘ (ta_ra)‘k de

C 2 -1 a 27
- I cos™" c/t (c<sr<a) (27)

dt ]
24, (ta-rz)%
The plastic displacement at the tip of the crack is of special interest
and is given as follows:

: (28)
J.c g dr = @

By using (26) and (27) in (28) this quantity is plotted with respect to

c/a in Fig. 4, 1In this calculation it is convenient to eliminate T in
(27) by use of (24) as
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3 u - zu'(w)z-o,x:=c
(1-v)ak (1-v)ak

=1 ¢

. 1 cos = — dr
YN 199 2% ¢ -1 el s, ar
] (1-c?/a®) {(1 ?/a) 2a %8 -1 tot 2a Ic/a (Tz_ca/aa)%

1
=3 (29)
" @ +2V){(1 -c2 /&® )% - 52:—3 cgs'l E + (1_2\))

The similar result (12) for a slit and the result for infinite array of
8lits under anti-plane shear are also shown in Fig. 4. If we consider a
critical range of c/a where & > chit then the penny-shaped crack gives

the largest range of the three cases. E, Orowan [10] and G. R. Irwia (11
have proposed that the stress T to propagate a crack of lémgth ¢ in a
semi-brittle solid of elastic constant E should be given by a type of
G6riffith equation

T/2 ~ (R v/e)¥ (30)
in which ¥ represents plastic work required to increase the aresa of the

crack by a unit amount, A similar expression to (30) may now be obtained
from (24) and (28). When c/a~1, equation (24) is approximated as

T/2k = ?%%t (1-c/a)% (31)

and equation (28) is approximated as

24(1-y)k
T -2y)y S(1-c/a) (32)

Eliminating (1-c/a) from (31) and (32), we have
/2 b T . 33
T2 =~ { ngwamy /¢ } (33)

4. DISLOCATION SOLUTION FOR PENNY-SHAPED CRACK
It will be shown that the approach using the dislocation distribution
and that using the Dugdale plasticity hypothesis are equivalent for the
case of the penny-shaped crack.
According to F. Kroupa [12] the stress ¢ due to a circular dislocation
located on the plane, z = 0, is z

%, TGS [ se3,e0n@nar, a0 (34)

where b is the Burgers vector in the z difection and s is the radius of the
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dislocation. Therefore, the stress due to the distribution of disloca-
tions %, inside a circular region z = 0 (0 < r < a) is

a ©
o, = 2—(‘:"_—\,) Jo s, (s)ds fo £J_(5r)J, (£s)de . (35)
On the other hand we have from (15) and (19)
21 @ F e feyae
o,=-14 fo -—U_(re-:z)” (36)

inside the same region. By equating (35) and (36), we are led to the
following relation between X s and f(t):

2(1-v) d M f(r)de
“ez“irlafr(‘tfﬁ- e

From equations (15) and (19) we have

a
1=V fstldt
g = = e = 5 L ()% (38)

Thus, we have from (25)

o =20-v)d ? _£(t)at
Yoz " "y dr L (312 (39)

which gives the same result as (37). This shows the equivalence between
the approaches of continuous theory of dislocations and the classical
theory of elasticity,

5. DISCUSSION

The maximum shear %G:z- ce) in Section 3 seems unlikely to produce

aez type dislocations. On the other hand a preliminary calculation does
not admit %Gsz- or) = k nor %Gse- cr) = k as a useful criterion. The
yield condition at the tip of crack will generally be non-linear as in
Mises' criterion leading to difficulty in the mathematics, However, it

is obvious that Oz is a primarily important stress component., Baren-
blatt [3] in fact assumes O, a8 the cohesive force per unit area at the
tip of crack by assuming a o, c.

In this section the following boundary conditions are considered

instead of (13). The result is to be compared with similar results using
the hypotheses of Barenblatt which were obtained by Keer [13] for a
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~ penny-shaped crack.

& =T z=o
z

g =0 =0 =0 z=0 (0<r<e)

z zr z0

a = 2k z=0 (c<r<a)

z

[0 =0 =w =0 z=0 (E<r) (40)
zr z0

The method of Collins is employed again. The function f(t) in (19)

becomes, this time,

f(t) =Tt (0<t<e)

N3

f(t) =T ¢t - 2k(ta-c3);“ (c<t<a), (41)

(S}

~ The displacement in the z direction is obtained from (15), (19) and (41) as

a E
20 (v, =20 [T(aa-xz)”- o [ L)t dt] (csr<a) (42)

r (t2-02)%

a %
2w (@), = 2 Frea s o 0 (227 (0sr<c). (43)

¥

z=0 m c (ta-rz)
~ The conditions
f(a) = 0 (44)
2(w)z=o .l (45)
lead to
T/2k = (1-c3/a2)% (46)
u 8 <

PN T (1-c/a) 2 (47)

Equation (46) is shown by curve I in Fig, 5. The curve is very
similar to curve I in Fig. 3. Curve II in Fig. 5 is obtained from the
result of Keer where the mean cohesive force per unit area inc < r < a
is 2k, that is,

2% = L :ozdr ¥ r/[gcgf(g-oﬁ (48)
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and the displacement is parabolic, that is,

1-r/a)?
24 ), 0= (1-v)rka —C%L (c<rx<a) (49)
c
< a ) <1 B ;>
The curves I and II in Fig. 5 are very close in the neighborhood of
ale =1, Equation (47) is shown by curve I in Fig. 6. The curve is lower
than curve I in Fig., 4, but still higher than curves II and III in Fig, 4

for ¢/a ¥ ¢, Thus, the same conclusion as Section 3 can be obtained, since
usually a crack starts from the neighborhood of c/a =1,

Curve II in Fig. 6 is obtained from (49) by putting 2(w)z_0 e

The curve ig very close to curve I in the neighborhood of c/a = 1. This
discussion concludes that several theories of fracture employed by
Dugdale [47, Barenblatt (3], and Bilby, Cottrell and Swinden [67, are
equivalent in brittle fracture,

Another interesting property of $ vs. c/a curve can be seen by curve

III in Fig. 6. 1If a pressure p exists inside the crack, equation (47)
becomes

¥
Toyak = (+e/20 £ (1-c/ay & (50)

Curve III in Fig. 6 is shown for the case of p/2k = 0.1. Since the curve
is higher than curve I, the unstable domaia of c/a increases. This may be
applied to the hydrogen embrittlement of ferrous alloys.

The multiplication and propagation of dislocations related to fracture
of the crack need further investigation, According to the relation [14]

between the time rate of dislocation density tensor and the dislocation
velocity tensor

U3 = (Vyp, - Yn23) (1)

where Z.and 3 are § and z directions respectively, and the parenthesis is
proportional [15] to the stress deviation,

vzxa - v123 = S5,

Vaas - Vazg = a1 )

In the plastic domain at the tip, S3, = 0 and S5 = %(2 o -0 - ce). Since
z r
2 & & + Oe » the stress component 0, acts effectively for the

multiplication of the dislocations.

Stationary Crack and

Equation (37) is obtained by

~ integrating them as follows:

a

2(1-v) ©

Continuous Distributions

APPENDIX

equating equations (35) and (36) and

r 0
t £(e)dt | _u jo sy, (s)ds J’o 3, (gr)J, (€s)de (a1)

o(ra-ta)Aj

We note the special case of Sonine's first integral

t E
J‘ Mf.-(g) % g"fJa/(gc)
2

o (tz-rz)%

and consider the left-hand side of (A1) as an Abel integral equation,

- But

=0

- Hence f(t) is found as follows:

a aez(s)d

The right-hand side of (A3) is re
solution is equation (37).

B2, * %8s
f(t) 2(1 -\)) mw t .[t (sa-ts)k

Performing the indicated inversion we derive

27 2 ® 3 ¥
t £(t) = 2—(5_—\))(;) J'o s o, (s)ds J'o €23 €O ()% (A2)

- :
[y @oneoeotae =(2) csr@oyt sy
[o]

(t > s)

s
(a3)

garded as an Abel integral equation whose

é
=
%
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lastic crack width
zone

Pig. 1, Slit in anti-plane shear, Oy: =Ratym=ow,

C = radius
of crack

plastic region

Fig, 2. Penny-shaped crack under uniform tension,

O =Tat z =wm,
z
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5.0

infinite 'array of slits
under cjnﬁplane shear.

4.0

3.0

2.0

Fig. 3. Length of Plastic zone vs. applied stress
(T/2k for curve I, R/k for curves II and I1I).,

o8fF— -
0.6
penny sthed crack
|
under tension.
04
0.2
antiplane| shear.
o
[ 0.2 04 06 08 1o 12

c/a

Fig. 4. Plastic displacement at the tip of crack
vs. the length of crack.
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o 02 0.4 0.6 oX:] .o
T/2k
Fig., 5. Length of plastic zone vs. applied stress.
Curve I: cz = 2k is given in 2z=0, c < r < a.
Curve II: mean cohensive force per unit area in
220, c s r < a is given as 2k.
]
0.6—
o |
3 ——~L
ka o 2 ~O\
- T
. LN
1
/| } AN
0.2 t - RON———
/ J -
o | ] ’
o 0.2 04 [eX ] 08 1.0
c/a
Fig. 6. Plastic displacement at the tip of crack vs. the

length of crack,

Curve I: Uz = 2k is given in 2=0, c s r < a.

Curve II: mean cohensive force per unit azea in z=0,

¢ <r<0 is given as 2k.
Curve III. (1 + p/2k) times curve I showing the.

effect of internal pressure inside the

crack.



