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ABSTRACT

The Bilby Cottrell and Swinden crack theory is applied to the prob-
lem of the growth of fatigue cracks. It is found that if a total critical
displacement is adopted as the fracture criterion, the theory leads to
observed growth laws.

INTRODUCTION

The purpose of this paper is to apply the theory of continuously
distributed infinitesimal dislocations on a plane to the problem of the
rate of growth of fatigue cracks. The concept of infinitesimal disloc-
ations appears to have been originated by Eshelby (5), who used it in a
calculation of the 'width'" of a discrete dislocation in a periodic lattice.
The first detailed development of continuously distributed infinitesimal
dislocations was given by Leibfried (9, 10). Head and Louat (7) later
pointed out that Muskhelishvili's work (14, 15, 16) contains the general
solution to the problem of a continuous distribution of dislocations on
a plane. This fact also was noted and used by Leonov and Shvaiko (12).
The general solution was used by Bilby, Cottrell and Swinden (1) and by
Bilby, Cottrell, Swinden and Smith (2) to investigate theoretically the
plastic yielding in front of sharp notches in metal specimens subjected to
shear stresses. We ourselves (19) employed the general theory in consider-
ing slippage on earthquake faults.

The problem of the opening of cracks by tensile stresses also can be
treated by infinitesimal dislocation theory. Such studies have .beem  :. .
carried out by Priestner and Louat (17), and by Bullough (3). These in-
vestigators considered only cracks in material which could support infinite
stresses in the region immediately ahead of a crack. . Bilby, Cottrell and
Swinden (1) pointed out that the results of their analysis of a freely
slipping crack in a material of finite shear strength also constitute the
solution to the problem of a crack opened by tension in a material with a
finite tensile strength. Their solution is equivalent to one found by
Dugdale (4) by another method.

We wish to show in this paper that the crack theory of Bilby, Cottrell
and Swinden (1) (called the BCS theory hereafter) can be developed further
to lead to the crack growth law found from fatigue studies.
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REVIEW OF THE BILBY, COTTRELL WIND
CRACK. PROBLAN AND SWINDEN SOLUTION TO THE FREELy SLIPPING

by anC:nsife; the freely slipping crack of Figure la which is acted upon

pendicufzr : sgear stress S. The crack extends an infinite distance per-

ey O the plane of the figure. It ig assumed that the crack it-
cannot support g shear stress and that the material in the plane of

the crack beyond th
shear Stressyg, e ends of the crack (x = + a) can support only a finite

The slip Produced on the Plane of the crack by an applied shear
zfgiziaﬁigan be described by a distribution function B(x?Pof infinitesimal
Stine B(x)éns (Figure 1b). The distribution function B(x) is so defined
e X ripresents the total length of the Burgers vectors of all the
Fances ons lying between x and x + §x. In Figure 1 the distribution

ction extends beyond the edges of the crack out to x = 4b because

such as in the case in Figure 1 where the dislocations are confined to

the region -
equatign b < x <b, the distribution function B(x) is given by the

b

B(x) = (Za/nu)(bz-xz)% f ———-Iiéilﬂii___ 1)

“b (x-x) (b2-x'2)%

Z::fs v ;s the shear modulus, ¢ = 1 {if the dislocationg are screw dislo-

o ;: lut @ = l-v, where v is Poisson'sg ratio, if the dislocations are

N fe Slocations, and T 1s the stress on the plane of the crack which

p:ogfszggmitheldislocations themselves. For the freely slipping crack
Viously ¢ must equal -S in the re ion -a <

0-S in the region a < ’x, < b. ¢ S S i

Th
Satisfi:ddistance b must have a value such that the following equation is

b
7 d 7
‘[ (x)dx 5 @ @

_b (bz_xlz)%

The solution of equations (1) and (2) fou
] nd by Bilby, Cottrell and
Swinden for the freely slipping crack is 7 -

2_ 2% 2 2% ,
B(x) = o(20/mu)log |Xbza)” + a(b®-x " ”
x(bz-az)l’j - a(bz-xz)% (for |x|sb) 3
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B(x) = O(for |x| = b)
and b is given by
b = a/cos (nS/20) (4)
If o approaches » this solution reduces to

B(x) = (Zan/p.)/(a2 - x2 % (5)

and b = a,

CRACK UNDER TENSION

A crack which is opened up by a tensile stress T also can be con-
sidered equivalent to a distribution of infinitesimal dislocations (1, 3).
The infinitesimal dislocations are edge dislocations and their Burgers
vector are perpendicular rather than parallel to the plane of the crack.
Equations (1) through (5) thus still apply if o = 1 - y and the tensile
stress T replaces the shear stress §.

RATE OF GROWTH OF FATIGUE CRACKS
Bilby, Cottrell and Swinden showed that their theory applied to the

modification of the Griffith criterion for the stress required to propagat:
a crack in a material which can partially deform plastically. This
equation is:

Stress (Ey/a)% (6)

where E is a modulus, a is the half-width of the crack, and y is a con-
stant. 1In the Griffith theory Y 1s equal to the surface energy of the
solid and in the Orowan-Irwin theory v is identified with the plastic work
which is dissipated in opening up the crack. Bilby et. al. obtained a
quantity vy from their fracture criterion, which states that the displace-

ment b

D(a) = I B(x)dx

at the tip (x = a) of the crack cannot exceed some critical value, say D*.
They find that when T<<o, vy = oD*, where ¢ is the finite stress defined
previously. Physically, the constant y of the BCS theory has nothing in
common with the constant vy of the Orowan-Irwin theory. We will show in a
later section that another constant Yy can be obtained from the BCS theory
that does arise from a dissipation of energy similar to the plastic energy
dissipation of the Orowan-Irwin theory. However the magnitude of this
constant is always so small that the BCS theory cannot be turned into an
Orowan-Irwin type theory of fracture. This failure encourages us to retai
the critical displacement criterion adopted by Bilby et. al.

For cracks cyclically loaded it would be natural to generalize the
BCS static fracture criterion to the following: a crack will increase its
length whenever the sum of all the cyclic displacements at the crack tip
exceeds the critical value D*, and a growing crack will stop extending

155



J. Weertman

itself only when the total displacement at its tip is less than D*.
(By the term "sum" is meant the sum of the absolute values of the dis-
placements.)

The dislocation distribution around a crack subjected to cyclic
stressing is found easily (19) if the half-width a of the crack remains
constant. Suppose we let B(x, T, b.) and b, (T) represent the dislocation
distribution B(x) and the distance b given by Equations (3) and (4) for
the initial (tensile) stress cycle. Let Ty represent the maximum tensile
stress which is applied. On reverse loading (T decreasing in value) the
dislocation distribution is equal to Bo(x, T, by(T )) + B.(x, T, b,(T)),
where e . 1

2_2.% 2 2%
By (x,T,b; (1)) = -(4ao/my) log x(b)"-a")* + a(b;"-x") o

L
x(blz-az)2 - a(blz-x2 ¥

(for |x| < b))

[

B, (x,T,b; (T)) = 0 (for |x| = b))

and

bl(T) a/cos(n{Tm - T}/40) ®)
Upon stressing the sample again in the original direction (T increasing)
the dislocation distribution becomes B.(x, T , bo(Tm)) + B, (x, T*, bl(T*))
+ Bz(x, T, bZCT)), where T* = 0 if the cycch stressing iS5 done between
the'limits “of 0 <7T <T .2

Here
i x(bzz-az)% + a(bzz-xz)%l
B, (x,T,b, (T)) = (400/mu)log €)
2 2 x(bzz_az)% i a(bzz_xz)%l
i (for 'xl < b2)
b,(T) = a/cos(n{T - T*}/4o (10)

2If the crack is stressed in push-pull testing where the stress is
cycled between limits -Tm < T & Tm the analysis becomes rather complex.
The total dislocation distribution at T = -T cannot be merely the

negative of the distribution at T = T  becauSe at no point can the distance

the crack gaps open be permitted to have a negative value. Obviously the
analysis of a stress cycle taken between 0 < T < T will approximate that
for the stress taken between - T < T < T since the major portion of the
crack will be closed up during that part Of the cycle where T < 0.
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Repetition of the stress cycle gives further dislocations distributio
functions B,, B&’ as s an, an+l, . . which are the same as those give
in Equations (7) and (9).

The displacement D(x) at the position x arising from an asymmetric
dislocation distribution function B(x) which extends out to the distance
b is simply b The sum of the absolute values of all
r B(x)dx. E ,d(x)l

2n

X

the displacements produced at the end (T = Tm) of n cycles at point x is
found through integration of Equations (3), (7) and (9). This sum is

2 2% 2 2.%
(b - @)% + (by - x |

02 - ah¥ - @l - D]

p'o = )]G = 222 {a 10

2n
x(bg - 32 E + a(bg - xz)%l
- x log 5
x(? - 2D - a®? - D]
0
®2 - aH% s ol - )|
+ 4gna log
o2 - aH% - ol - D
x(bi - a2 % + a(b% - a2 %I
- 4gnx log (11)
x(bf - 32)% - a(bi - a2 %'
where b0 = bO(Tm), b1 = bl(T*)’ and g = 0 for !x' > b1 and g = 1 for
'xl < bl'
At the crack tip (x = a) the displacement sum Df(a) is
pT(a) = 4202 [}og (b,/a) + 4n log (b /a)] 12)
b 0 1

When T << g this equation can be reduced, with the aid of Equations (4)
and (8), to the following

2 2
T m(T_ - T%)
+ _ booa m O RO e 13
D ay = Em 20 Ll 4o (£3)
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For the case of n = 0 (which was considered by Bilby, Cottrell and

Swinden) and DT(a) set equal to the critical displacement D*, Equation
(13) reduces to

T, = (uoD*/mea)® (1%

This is the fracture criterion given by Equation (6). 4 stress satisfying
this equation would cause the crack to expand catastrophically.,

Suppose Dt (a) is set equal to D* and T is so small that n must be a
large number for Equation (13) to be satiszed. In this case a crack will
begin to increase its length when n is equal to

n = &2 (15)
ﬂaaTm

for 7% = o

The crack will not fail catastrophically after this incubation number of
cycles. Rather it will increase its length until the value of Dt at the
tip is less than p, Thereafter the crack will grow in length during each
stress cycle until either it is of a length that Equation (6) is valid or
it is comparable to the specimen dimensions or to the spacing between
cracks. At that critical Iength it will fail catastrophically,

Consider now the rate at which the crack 8rows sometime after growth
has been nucleated. Assume that T << 5. Let a represent the half-width
of the crack at the beginning of each stress cycle (when T =T ) a + §a
the half-width at the end of each cycle (when again T = T). The dis-

g;ven b{ Equation (3). The actual displacement D(x) at the beginning of
the cycle is
2 2% 2 2%
(by" - a%)* + by~ - x°) ,

(boz - alyE (boz j Xz‘%,

= 200
D(x) T a log

x(bo2 - a2 % + a(bo2 - xz)%,

x(boz j az)%

- x log (16)

- a(bo2 - XZ)%,

At the end of the cycle the displacement is given by the same equation
except that a is replaced by a + sa. Figure 2 shows D(x) in the region
of a < x <« bO when T, << ¢ and D(x) when the crack has extended to a + sa
(and bo has changed to b0 + 6b0, where ébo = §a).

The extension ga per cycle in the length of the crack can be estimated
in the following manner. The number m of cycles required for the crack to
advance azdistance bg - a is approximately (b, - a)/sa. Since by - a =
i(ﬂTm/Zc) when T << o, the number m is approximately equal to (when m
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is large)
2
T
a m
= 5a 20 an

The total displacement D+t at the point bg of Figure 2 which occurs be-
tween the time the dislocation distribution first has a non-zero value

at by (curve 1) and the time the crack grows until the tip is actually at
the point by of Figure 2 (curve 3) is approximately equal to the sum

m-1 2 2. % 2 2.5
bF" - a*™)? + (b%° - xx%)
Dﬂ-es—igg-z a* log fz 5 12 ZJ
o 6 - ah) - op? - wd|
(bt - an))¥ 4 ax by - x*z)%l
- x* log (18)
x*(b’f2 - a*z)% - a*(bf2 - x*z;gl

where g = 0 for ,x*, >b¥ and g = 1 for 'x*, < bf . In this equation a* =
a + kéa; b¥ = a2 + a(nT, /40)° + kéa = a + kga + msa/4; and x* = by - kéa =

a + mga - ksa. By setting D++ equal to the critical displacement D% in
Equation (18) it is possible to obtain values for m and the crack extension
sa.

The summation given by Equation (18) can be approximated by the inte-
gral
1 bl
Dt+ & — | D+(x)dx (19)
da 4

where Dt (x) is given by Equation (11) with n set equal to 1 and T* equal
to 0 and the terms containing by are ignored. Upon integration Equation
(19) becomes the following when D+t = D*

sa = ggﬁﬁ (b2 - az)%(g . sin'l(g—o) - 2a log (b;/a)| (20a)
1

When Tm << ¢ this equation reduces to

4
ch'az n-Tm asz4
fa ={22 ) _m) 5 (20b)
3D% 2 2
T g Yuo

where y = gD* is the constant previously defined by Bilby, Cottrell and
Swinden.
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Equation (20b) predicts3 that the increase Qa in the length of the
erack per stress cycle is proportional to (aTm2 . Fatigue data (18)
do follow such a rate of growth law at low stress amplitudes. Equation
(20a) predicts a more rapidly increasing growth rate at higher stresses,
a behavior which is also observed.

In order to compare the magnitude of the growth rate predicted by
Equation (20b) with experimental data it is necessary to know the values
of y and o_for the metal tested. Knott and Cottrell (9) found that
vy = 2 x 10° ergs/cm® for iron at a temperature at which it is ductile.
This value is about the same as that for steel and is of the same magnitude
as the value of v found for aluminum alloys (8, Table 2, p. 566).

If the applied stress were much lower than the critical resolved
shear stress it would be reasonable to set g equal to the critical
resolved shear stress. However, fatigue tests usually are carried out
above the yield stress. Under these conditions it is reasonable to set o
equal to the ultimate strength of the metal where the ultimate strength is
determined from compression rather than tensile tests in order to avoid
the uncertainties caused by necking). Consider the results of McEvily
and Boettner (18) on the rate of crack growth in copper. They found for
a tensile stress T, of 6.4 x 108 dynes/cm2 and a crack halfwidth of
a = 0.19 cm that the crack growth rate was §a >~ 3.8 x 10-7 cm/cycle (their
lower left datum point in their Figure 9a). If these values of T, and a

are substitused into Equation (20b) along with the values y=2x 108ergs/cm2,

oc=4.3'x10 dynfs/cm (obtained from Seitz, (18), Figure 47, p. 73),

and y = 4.3 x 1ol dynes/cmz, the predicted crack growth rate is found to
be sa = 15 x 1077 cm/cycle. Equation (20b) thus leads to not unreasonable
values of the fatigue crack growth rate.

[}

FAILURE OF ENERGY CRITERION FOR A BCS CRACK

We wish to prove a negative result in this section, namely, that in
the BCS theory the energy dissipated by "plastic" work in the region ahead
of a crack usually is not large enough to prevent the crack from failing
catastrophically. Therefore energy is not a good fracture criterion.

The energy dissipated that will be calculated for the BCS crack is
identical to that calculated by Goodier and Field (6) using the Dugdale(4)
theory.4 Goodier and Field, however, did not calculate the lowering of the

3Since the writing of this paper, we have learned (J.R.Rice, personal
communication) that a similar crack propagation law was derived in
another manner by Rice in the unpublished Leigh University report:
"Fatigue Crack Growth Model: Some General Comments and Preliminary Study
of the Rigid Strip Model™ (1962). We wish to thank Professor Rice for
bringing this work to our attention,

4

*There apparently is a misprint in Equation (6) of Goodier and Field's
paper. The second term on the right hand side of their equation should
be multiplied by 2.
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elastic. energy caused by the presence of the crack and therefove were
unable to notice that although the energy dissipated can be large, it )
almost never is large enough to stop a crack from propagating catastrophi-
cally.

Suppose a BCS crack is made in a block of material which is stressed
under a shear stress S (or a tensile stress T). The crack is made by
cutting along the plane of the crack from -b < x < b, placing on the cut
surface external stresses which have the initial value S, and then decreas-
ing these applied stresses until they are equal to O in the region -a <
x < a, and equal to g - S in the regions a < |x| < b. The cut surfaces
are then rejoined and the externally applied stresses can be removed with-
out further change in the displacements. The work W which must be done on
the cut surfaces in order to create the crack is equal to minus the
integral of one-half the product of the displacement across the cFack and
the final value of the externally applied stresses. The integration extends
over the length of the crack from -b to b. Hence

b b
W= -£ S* I B(x)dx| dx (21a)
x

where S* is equal to S for 0 < x < a and is equal to ¢ - S for a < x < b,
The substitution of Equation (3) into this equation gives

2 2
W s BUER Y S B (21b)
it
When S << ¢ this equation reduces to
22 4
anszaz ag a_ [nS 21
Wm = . S R (21c)
2 3mu \20
The energy dissipated, E,, is simply equal to the yielding or
friction stress o times the dgsplacement, integrated over the crack.
Therefore
b b
Eq = ZI - B(x)dx | dx (22a;
a X
which is
2.2 2 5
E. = boo a osSfb _ 4| . 2 log (b/a) @n
d ™ 2 ¢ aZ

When S << g this equation reduces to
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E. = §2w2a2 ﬁ 4
d 3 20 (22¢)

b
It can b
e verified that Ed - W is equal to Sf:be(x)dx. This last

€xpression is the work done by the applied stress S at the outer surface of

the block when the crack is Her
o o urface
: made ere it is assumed that the uter s

If the outer surface is held constant in grips which do not move wh
the ;rack is made, the quantity W given by Equation (21) is approximatel)e;n
€qual to the reduction in the elastic energy of the block. It is not
:fic;i{ equal to the elastic energy reduction because the stress S decreases
o ghtly as the crack is made. However, if the applied stress is small
ese two energies, when expressed in a Bower series in S, are identical in

st rder term (b th e
o to
the |(7we [o] q\lal onS“©a /zp,). They differ Oﬂly in the

i /diince b/a does not depend on a it can be seen that both dW/da and

crng ca;: Proportional to a. Therefore it is impossible to derive a

e A riterion equation such as Equation (6) from Equations (21) and (22).

. €r, except when S ~ o, ldEd/dal < de/dal and thus according to
quations (21) and (22) a crack should almost always fail catastrophically

:Z:E th;ugh, as Goodier and Field calculated, Equation (22) can lead to

. ir arge values of Y. (Of course, for very small cracks the surface
nsion of the crack becomes important and the Griffith theory will be

SUMMARY

ea bIt has been shown that the Bilby, Cottrell and Swinden crack theory

T be applied to the problem of the growth of fatigue cracks. If a fracture
criterion of critical displacement is adopted it is found that the theor
does lead to the observed laws of rate of growth. It is shown that an g
énergy criterion is not satisfactory for predicting fracture with the BCS
theory despite the fact that large values of energy dissipation were
calculated by Goodier and Field.
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Figure 1 (a) Crack under shear stress S. Crack extends from -a to a.
Slipped zone ahead of crack extends from a < |x| < b. (b) Dislocation
distribution around the crack.
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Figure 2 Displacement in deformed zone ahead of crack tip. Curve 1:
when tip is at a; curve 2: after one cycle when crack has grown by
amount §a; curve 3: after m cycles when crack has grown to half-width bo.
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