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ABSTRACT

A numerical method for analyzing the stresses and strains
in work-hardening plates is applied to three crack problems. The
first problem is that of an internally cracked plate, the second
allows for reduced work-hardening, and the third involves external
cracks. Selected data are presented and discussed briefly. One
important result indicates that, compared to the elastic solution,
the singularity of stress at the crack point decreases with load,
while that for strain increases. Also, there are significant dif-
ferences between internally and externally cracked plates in terms
of the stress and strain fields.
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Introduction

Over half a century ago, Inglis1 deduced the elastic stress and
strain fields in a plate containing a perfectly sharp crack. Among
other things, he showed that the stress concentration at the crack point
is infinite. While this result exceeds the limitations of elasticity, it
nonetheless has provided a foundation for modern fracture mechanics.
In discussing this classic work, Hopkinson~ pointed out that the next
step would be to repeat the analysis, allowing for both elastic and in-
elastic behavior.

Considerable progress has been made in this direction in recent
years. For the most part, however, the various efforts reported in
the literature* have involved certain idealizations, e.g., perfect plas-
ticity, whose import is not readily evaluated. Comparison with exper-
imental results indicates, however, that the detailed shape of the stress-
strain curve is important. '~ What is needed, therefore, is a method
of analysis that may be used with arbitrary stress-strain curves. In
particular, we should be able to handle arbitrary work-hardening in
treating crack geometries.

There is no great difficulty in establishing the field equations,
at least within the context of mathematical plasticity. Beginning with
the well-known Prandtl-Reuss flow rule, the theory gives equations
relating increments in stress and strain afforded by increments of
applied load. See the Appendix. For phazne stress (in the x-y plane),
the constitutive relations may be shown®~ to take the form

E6€x = 6crx - \Jéoy + (20x - cy)&S
E6ey = 60Y = \)60x + (ch - cX)GS (1)
Ebde =

(1 +v)ér__+ 371__65
xy Xy Xy

where E is the tensile modulus, v is Poisson's ratio, and & signifies
an increment., Furthermore
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* See, e.g., Refs. 3-6.
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and M..(tT ) is the tangent modulus of an octahedral stress-octahedral
plastic st?ain curve, expressed as a function of the octahedral stress
Foe To these relations are added the requirements of equilibrium and
compatibility.

Because each of the stress and strain components is in effect
the running sum of its increments, equations 1 and 2 are highly non-
linear. Upon closer inspection, however, it is seen that these rela-
tions are, to the first order, linear in the increments of their variables.
Thus we may view a boundary-value problem as consisting of a set of
quasi-linear sub-problems to be solved in succession. Each sub-problem
is defined by the associated load increment and the accumulated values
of the stresses. In substance therefore, we have a series of problems
in linear, anisotropic, inhomogeneous elasticity.

It follows that any solution technique applicable to the latter
class of problem may be extended to planar elasto-plasticity. In par-
ticular, certain well-developed numerical methods may be adapted, the
primary modification being inclusion of all terms shown in equation 1.

Thus the elements of the requisite solution technique are readily
available; it is necessary only to assemble them. This has been accom-
plished and a number of problems have been treated. For the present,
we have selected MT(TO) in a simple form* based on the Ramberg-Osgood
formula:

0, Ts = T&
E -
MT'(TO') 2Ee ot 1/n-1 (3)
____X.(_jl - ) T > TL
nTL TL 3 o

where ¢ is a constant, T, is the octahedral stress at the proportional
limit, add 0 <n < 1 is a constant. The numerical technique we have1
used is known, for elastic analysis, as the direct stiffness method. 4

With the solution technique thus assembled, we have begun study
of a series of boundary-value problems of interest in fracture mechanics.
The present paper reports certain results for an arbitrarily selected
stress-strain curve and plate geometry, together with some variations.
Attention is limited to increasing load; unloading phenomena are deferred
to a subsequent report.

Problem Specifications

The first, or reference, problem considered is that of a rec-
tangular plate containing a centrally placed internal crack. The half-
crack length is taken as unity; length and width of the plate are nine
and six, respectively. The plate is loaded in uniaxial tension perpen-
dicular to the line of the crack, instantaneous stress g being accumulated

* The present analysis will easily accomodate other representations for
the tangent modulus, providing the stress-curve is monotonic.
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from a succession of increments. See Table 1 Due to the s

of the Problem, only one quadrant of the plate was analyzed. y'}'xirix;efli};d-
rant is represented by a total of 348 triangular elements of varying size
and shape; tpe elements are joined at 200 nodes. The smallest elements
are loc.:ited In the vicinity of the crack point and have a characteristic
dimension of 0, 05, referred to the half-crack length. See Figures la

b, c. The boundary conditions are: ¢ ,

X = 3,0: o, = - = 0 <
= 4.,5; =
Yy ey = 0
oy = g
X = s 02 .
&9 Txy = 0 P (4)
u = 0
= 0.0: &
y 'rxy 0
x<1.0: g = 0
v )
x2>1,0: v = 0

where uand v are the x- and y- components of the displacement vector,
respectively.

The material properties and constants (eqn 3) are:

E = 10.80 x 10°® 1b/in?

v = 0.3333

€, = 0.009716

n = 0. 3964 ol

1 = A2 GL/3

% = 11.50 x 10° 1b/in?

and.tl}e resulting curve is shown in Figure 2. Consistent with the use

of finite load increments, the continuous stress-strain curve was re-
pPlaced by a series of points such that the actual curve traversed by
each element is multi-linear, i.e., a series of connected line segments.
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Deviation from the actual curve and the actual slope (tangent modulus)
is controlled by proper selection of these points.

The second problem is identical to the first in all respects
except one. In order to reduce the work-hardening, ¢ was increased
by 50% to the value 0.01457. The resulting curve is sHown in Figure 2.

The third problem represents a geometric inversion of the first
in that the boundary conditions at x = 0.0 and X = 3.0 are interchanged,
giving a plate with symmetric edge cracks. The crack length/plate
width ratio is maintained, and the relative arrangement of elements in
Figures 1b and c is unchanged. Material properties are specified by
equation 5.

Summary of Results

In each problem, the first load increment is adjusted to bring
the most highly stressed element slightly above the proportional limit,
and the solution corresponds to that of classical elasticity. Subsequent
increments of G occur in the Presence of some inelastic behavior -- see
Table 1. Following each load increment, the displacements, strains,
stresses, and energy densities for each node or element are computed;
a total of 1.1 x 105 pieces of data are printed out for each case. In
order to conserve space, we show selected data pertinent to fracture

mechanics.

It is convenient to present data graphically, for which we em-
ploy several techniques. One is to show the spatial distribution of a
quantity along a given line and another, the spatial distribution over
an area using contour lines, i.e., lines along which the quantity as-
sumes a fixed value. We also examine the variation of a given quan-
tity at a fixed point as the load increases. The last technique, while
not meaningful for linear elasticity, illuminates certain aspects of
elasto-plastic flow.

We show first the stress and strain fields produced by the ini-
tial load increment, comparing them to results obtained from classical
planar theory. For example, Figure 3 shows the value of g /5 along
the x-axis* obtained numerically and from Inglis’ solution fdr the in-
finite plate. *¥* It ig apparent that the computational technique used,

® Actually, the computer Program in its present version does not give
point values of the stresses or strains. Instead, values refer to an en-
tire element and are thus 'averaged' over the area covered by that ele-
ment. Since no element straddles the x-axis, the values apply slightly
above the axis. We have referred these to points defined by the centroid
of each triangle, the justification being agreement with analytic results.
As pointed out in Ref. 15, other representations might be more consis-
tent with the spirit of finite element methods. In our case, however, the
resolution of meshes seems to be sufficient so that use of point values

is appropriate.

** While more precise comparison could perhaps be made with a finite
plate solution, e.g., Ref, 6, the Inglis solution is sufficient for evalua-
tion near the craci. Comparison is made only for an internal crack.,
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together with the element configuration, is capable of resolving reason-
ably high stress concentrations. A finer mesh at the crack tip would
Presumably show even higher concentrations. Moreover, the agreement
between numerical and analytic results is adequate, except perhaps im-
mediately behind the crack point. The y-coordinates of these few points
are comparable to that of their x-coordinate, and they cannot be regarded
as close to the x-axis. In this connection, it may be noted that the high
gradients in this area Proved to be a severe test for the resolving power
of the elements.

A similar comparison might be made for the strains, but since
the elastic strains and stresses are linearly related, the same corre-
spondence is to be expected. Of more interest is the distribution of
pqaximum shear strain around the crack point, as shown in Figure 4,
in comparison with the infinite plate solution (internal crack). It is
seen that corresponding contours do not fall along one another, but the
presence of finite boundaries in the one solution precludes much closer
agreement. The difference follows the trend shown by Redshaw and
Rushton* ' and to that extent, accuracy of the numerical solution is
deemed satisfactory.

] Further Loading: Increasing the loading causes local yielding
whlch spreads over the plate. As, for example, elements along the
X-axis yield, their load-carrying capacity is reduced and successive
elements will become more highly stressed. This is illustrated by the
variation of o for the six elements ahead of the crack. In Figure 5a
we show 0y, /5’ for the reference problem, the purpose of non-dimension-
alization being to show deviation from proportional loading. * At low
loads, the stresses remain in fixed ratios to one another. At a certain
point these ratios begin to change, due to yielding of more highly stressed
elements. The precise load at which this deviation occurs depends of
course on the configuration of the elements, but the agreement shown
in Figure 3 suggests the actual value is given reasonably well by the
Present calculation.

In turn, each of the elements yields, shown by the maxima of
the curves in Figure 5a. The values of g /3 drop more or less sharply;
subsequently the curves flatten out. Thede elements are in a condition
?f Proportional loading up to the point at which yielding occurs. This
is fo.llowed by a transition, leading to a phase of quasi-proportional
10ad11’.1g. Most of the load redistribution can be associated with this
transltion, with only minor changes occurring thereafter. In a sense,
the transition is also associated with the "knee' of the stress-strain
curve, and the next phase with the much flatter portion beyond.

) It shquld be evident that the same processes will occur at any
pPoint loaded into the plastic region. The extent of load redistribution

¥ These data are shown as smooth curves rather than discrete points.
S.catter of the points was found to be hardly more than the width of the
line used.
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perforce depends upon the details of the stress-strain curve. In par-
ticular, a significant portion of the loading history is incorporated into
the transition phase, and the nature of initial yielding will have a dom-
inant influence on the stress and strain states prior to fracture. *

Similar data are shown in Figure 5b for the second and third
problems. This particular method of changing work-hardening does
not affect the stress field noticeably, probably because all stress-based
quantities have been held fixed. The strain field, as shown below, is
altered by this change in work-hardening. Concentration of stress is
slightly higher in the externally §racked plate, following a trend ob-
served in the analytic solution. 1

Singular Behavior: Of some interest is the singular behavior
of the stresses. From planar elasticity we have

-

o to | = KT [(e-b)/2b] " + Ofx/b) (6)
y y=0

where b is the half-crack length, and K is a constant. With the present
method we cannot of course obtain singular quantities, but we may use
some of the data to compute an indicated stress singularity., We first
rewrite equation 6 in the form

e n(q)
K(o)o [(x-b)/2b) (7)

o, tao

x y -
Next we evaluate K(0) and n(o) from a least squares fit of the data at
elements 6, 26, 50, and 77. For the first (elastic) load increment, we
find for the internal crack

Kelastic 1.19
- . (8a)
Pelastic = =0.51
Values for the exter nal crack are¥*
Kelastic 148
(8b)
Telastic ~0.48

¥ This same observation may be made of the data shown in Refs. 8 and 10.

*¥* Appropriate reversal of the x-coordinate has been made.
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In both cases, deviation as 0. 01. The indicated singularity is slightly
Iowe.r for the external crack case, but the indicated elastic stress in-
tensity is nearly 25% higher. As loading is increased, these para-
meters vary as shown in Figures 6a and b. The three phases noted
above manifest themselves in both curves., Not only does the intensity
of the indicated stress intensity vary with load, but also the strength
of the singularity itself. Respective behavior of internal and external
cracks is maintained throughout the loading sequence.

The strains exhibit a related behavior. In the same manner as
above we write

E(e:x +¢c ) _ n(a)
= K(g)o [(x-b)/2b] (9)

1 -y =
and evaluate K(g) and n(5). Eq. 9 is written so that equations 8a, b
'obtam.; subsequent dependence is given in Figures 7a and b. The trend
1S noticeably different here. The indicated strain intensity factor in-
Ccreases sharply, and the strength of the indicated singularity increases
with some suggestion of a limiting value. Again, some differences are
to be noted between the internal and external crack geometries.

) ] Plastic Enclave Growth: For the arrangement of elements shown
in Figure I, there is 1o plastic enclave for 7 < 2300 b/in®, As load in-

Creases, however, yielding occurs and sizable plastic zones are generated.

.Cons.lstent with the distinction between elastic and elasto plastic flow used
in this computation -- see Eq. 3 -- we define the plastic enclave as that
contour along which TO/T = 1. This definition does not of necessity de-
pend upon the recoverabi ity of strain, that is, elastic strains are physi-
cally defined as those which are recovered after load removal, and may
not be equivalent to simple linearity between stress and strain, The
difference in these two definitions is non-trivial for the stress-strain
curve used in this analysis. This may be seen by finding the value of
To/ Ty at the proportional limit and, say, the 0.2% offset. These two
values are 1.0 and 1. 47, respectively, for . = 0.009. . ., and a slight
o.ffset'corresponds to a large increase in yieYd stress. As a result, de-
11neaF1on of the plastic enclave in terms of TO/TL will be a sensitive
function of the specific numerical value of this ratio actually used.

_ With this qualification in mind, we may examine the growth of the
plaspc enclaves, shown in Figure 8 for the reference problem. At an
applied stress less than about 9,000 lb/inz, the yielded zone is contained
by material still in the linear elastic range, making the term plastic
enclave quite appropriate. At g 10, 000 1b/in , the plastic zone inter-
sects‘ the free edge, and at 11, 500 lb/in‘2 (the proportional limit), the
plastic zone includes a small portion of the loaded edge. At still higher
}oads, the boundary moves to the y-axis, and in effect an elastic enclave
1S generated. Because the plastic enclave is defined in terms of a stress,
its growth is not greatly influenced by the reduction in work-hardening
of the second problem. We therefore omit a detailed plot. The exter-
nally cracked plate, however, shows different enclave growth patterns, as
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may be seen in Figure 9. The enclaves are more nearly erect at
lower loads. At T ~ 10, 000 lb/inz, when enclaves in the internally
¢racked plate have reached the free edge, those for the third problem
join along the y-axis. In addition to being contained by an elastic area,
the plastic enclaves surround an inner elastic zone. When G reaches
the proportional limit, a greater portion of the externally cracked
plate has yielded, at least in terms of the present definition. Hence

it would appear that the rate of growth is greater in externally cracked
plates than those with an internal crack.

Strain Fields: An indication of the distribution of strain is
given by contours of the difference between the principal strains. This
quantity is proportional to the maximum shear strain, and these con-
tours are therefore similar tc isochromatic fringes observed in photo-
elastic experiments. For the reference problem, these contours are
plotted in Figures 10 and 11 for 7 = 8, 000 lb/in2 and 13, 000 lb/inz.
Selected contours for all three problems are shown in Figures 12 and
13, It is seen that reduction of work-hardening tends to produce nar-
rower, less erect shapes, while inversion of the crack geometry gives
a higher concentration of strain at the crack point.

Strain Energy: The strain energy density at any point of the
plate is given by

.
1 -2y 200 bkl 23 0% ean
W= E o to)" T, *zg Moo U0
[o]

The first two terms on the right of Eq. 10 represent the linear elastic
portion of W, and may be regarded as dilatational and distortional,
respectively, in the usual sense. The last term gives the inelastic
strain energy density and is solely distortional because there is no
plastic dilatation. If W is integrated over the plate area, we have the
total strain energy (per unit thickness) in the plate and can separate
the elastic and plastic portions. This has been done and the results
are shown in Figure 14 for the three problems under consideration.

It is seen that the elastic energies for all three are nearly the same,
primarily a result of having held stress-based quantities fixed. No-
ticeable differences occur, however, in the plastic portion of the strain
energy. The externally cracked plate absorbs less work than the other
two, a result of the more localized strain concentrations.

Discussion
2o sCUS S0

The results presented in this paper are selections from exten-
sive data generated by a newly-developed solution technique for elasto-
plastic plates. The objective has been to produce these results without
recourse to ad hoc assumptions for specialized geometries, e.g., cracks,
and this objective seems to have been met. Further development of the
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tec.hnique might involve itg application to a particular pProblem for
which experimental data are available. Detailed comparison between
Physical and analytical results could then be used for more extensive
evaluation of the technique.

: The work to date, based on the idealized representation of M

in Eq.. 3, has provided considerable information as to the nature of any
expe{mment intended for comparison. For example, it is clear that
Specification of the stress-strain curve must be Very accurate, partic-
ulaljly in the region of initial yielding. The experiment should be also
designed to detect characteristics such as loading phases and indicated
8tress and strain singularities.

Fracture Criterion: Ultimately we are interested in using this
analysis to deduce & critical value of the applied stress, i.e. , the point
at which the crack begins to extend. The question arises, how should
the results be us ed to achieve this end? There is, unfortunately, no
c'l:eg.r answer and in fact, this matter is the subject of considerable
study.

In a broad sense, two types of condition are available. The first

is based on the concept of limiting values of some field quantity. For
example one might argue bounds on maximum stress or strain, dilata-

tion, distortion, energy density, etc. In any event, criteria of this type

Pertain to phenomena at a point, Presumably at or near the crack tip.
Th.erefore, considerably more information than is now available is re-
quired as to the details of the stress and strain fields and the limiting
behavior of the material,

The second type of condition deals with stability of the crack
geometry, considered as a part of an overall system. In the special
case of linear elasticity, such a condition reduces to the well-known
erffith criterion.. The primary requirement, which stems from the
first law of thermodynamics, is that the potential energy of the loaded
plate remains stationary during an infinitesimal extension of the crack.

Not.e that this is not equivalent to the equality in energy of two
plaFes similarly loaded but having crack lengths differing by an infini-
tesimal amount. It ig crucial that we allow for a stress relaxation in

The first step in computing an energetic fracture criterion is
thel:efore an unloading analysis. For this we need a complete pre-
scription of the stress-strain curve and, to be accurate, details such
as hysteresis and Bauschinger effect ought to be included. This is
evidently analogous to the need for details of the stress-strain curve
in the region of initial yielding, and may be as difficult to obtain in
the laboratory.

268

Elasto-Plastic Stressesand Strains in Cracked Plates

Acknowledgments

Work reviewed in this Paper was supported by the Air Force
Materials Laboratory under Contract AF 33(615)-2186. Computations
were performed at the Willis H. Booth Computing Center, California
Institute of Technology. The authors are Pleased to acknowledge the
cooperation of Professor C. W. McCormick, Jr. and Mr. K. J. Hebert
in providing a portion of the computational methods.

REFERENCES

1. Inglis, C. E., Transactions of the Institute of Naval Architects
(London), 60, 1913, 11. 219-230.

[s%

Hopkinson, B., Transactions of the Institute of Naval Architects
(London), 60, 1913, 11. 232-234,

3. Allen, D. N. de G. and Southwell, R. V., Philosophical Trans-
actions of the Royal Society (London), series A, 242, 1949-50,
pPp. 379-414.

4. Jacobs, J. A., Philosophical Magazine, 41, 1950, pp. 349-361.

5. Stimpson, L. D. and Eaton, D. M., ARL 24, Aerospace Research
Laboratories, Office of Aerospace Research, Wright-Patterson
Air Force Base, July 1961 (ASTIA AD 266 347).
See also extracted results in: Williams, M. L., Proceedings
of the Crack Propagation Symposium, 1, College of Aeronautics,
Cranfield (England), September 1961, 11. 130-165.

6. Hendrickson, J. A., Ph.D. Dissertation, California Institute of
Technology, 1957.

7. Dugdale, D. S., Journal of the Mechanics and Physics of Solids,
8, 1960, 11. 100-104.

8. Dixon, J. R., and Strannigan, J. S., NEL Report No. 115,
National Engineering Laboratory (Scotland), October 1963.

9. Ault, R. T. and Spretnak, J. W., ASD-TDR-62-223, Directorate
of Materials and Processes, Aeronautical Systems Division,
Wright-Patterson Air Force Base, April 1962,

10. Gerberich, W. W., Experimental Mechanics, 4, 11, November 1964,

pp. 335-344,

1. Swedlow, J. L. and Gerberich, W. W., Experimental Mechanics,

4, 12, December 1964, pPp. 345-351.

269



J.L. Swedlow, M.L. Williams, and W.H. Yang

12, Hill, R., The Mathematical Theory of Plasticity, Oxford University
Press, 1950,

I3. Swedlow, J. L. and Yang, W. H., GALCIT SM 65-10, California
Institute of Technology, May 1965,

14. Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. Jiy
Journal of Aeronautical Sciences, 23, 9, September 1956,
PpP. 805-823, p. 854,

15. Percy, J. H., Loden, W. A., and Navaratna, D. R., RTD-TDR-63-
4032, AF Flight Dynamics Laboratory, Wright-Patterson Air
Force Base, October 1963,

16. Sneddon, I. N., The Effect of Internal Cracks on the Distribution
of Stress in Thin Elastic Strips and Cylinders, Applied Mathe-
matics Research Group, North Carolina State College, July 1963.

17. Redshaw, S. C. and Rushton, K. R., Journal of the Mechanics and
Physics of Solids, 8, pp. 173-186.

18. Swedlow, J. L. and Williams, M. L., ARL 64-175, Aerospace
Research Laboratories, Office of Aerospace Research, Wright-
Patterson Air Force Base, October 1964,

Appendix:

The constitutive relations for elasto-plastic flow theory are

derived as indicated in the following brief outline. Each strain incre-
ment is separated into elastic and plastic parts, viz.,

Se.. = 6e..(e)+ s¢. (P) (11)
ij ij ij

The elastic portion is required to follow the generalized Hookean Law

(e) _ 1-2y 1+y
6eij == (éokk)aij + o 6Sij (12)
where
6sij e écij = (6okk)6ij/3 (13)

is the deviator of the rate of stress tensor, and §.. is the Kronecker
delta. We use indicial notation and its associated conventions. Latin
indices have the range 1, 2, 3,
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The plastic strain rate is assumed to obey the Prandtl-Reuss
flow rule

se.. P! = 5 s (14)
ij ij
where s.. bears the same relation to Oij as Bsij to éoi., and )\ is a
1]

positive scalar function. If we multiply Eq. 14 by itself we find

1
2
&\ = (6sil(p) 6€ij(p)) /(sk,(, sk{,) (15)

J

For convenience we define the octahedral plastic strain rate

—

2
6€O(p) - (ﬁeij(p) 6€ij(13)/3) (16)

and the octahedral stress

o~

To = (545 845/3) (17)

so that Eq. 15 becomes
6€O(p)
i T TSy k8]

A uniaxial tensile test may be used to evaluate §e (p)

in terms
of T . It may be shown that the result is e

ge (Y o 67 /T2M (7 )] (19)

where M (T ) is the tangent modulus of the associated octahedral stress-
octahedraTl pcfastic strain curve,

Combining these, the constitutive relations between the stress
and strain rates are found to be

6€ij = Dijk& 60k& (20a)

where

271

Sy




J.L. Swedlow, M.L. Williams, and W.H. Yang

_ 14y
Pijie = 2B Gyebiy + 65y B0
(20b)
it " %q %10/3)

2M’I‘(Gnrm b Cyrr 6mn/3)(0mn - cyss 6mnm

In the case of plane stress, for which we associate the indices
L, 2, 3 with x, ¥, %, if is required that

O olxy) ; T = Txy(x,y)

(21)

g

e GY(X.Y) HEE

(]
=Y

n
Q

1]
(=]

Xz yz z

?ubstitution of Eq. 21 into Egns. 20 a and b leads directly to Eqns.
and 2.

Other specialized cases of Eqns. 20 may easily be derived,
€. 8., plane strain, tor sion, axisymmetry. These relations may also
be generalized to orthogonal curvilinear coordinates by means of ap-

Propriate tensor operations. A more detailed account of the foregoing
derivation appears in Ref, 13,
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TABLE 1
Load Increment

2,3001b/in2
200
300
300
300
300
300
400
400
400
400
400
500
500
500
500
500
500
500
500
500
500
500
500
500
500
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Accumulated Load

2,300 1b/in2 3
2,500
2,800
3,100
3,400
3,700
4,000
4,400
4,800
5,200
5,600 5
6, 000

6,500

7,000

7,500 g
8, 000 vﬁg
8,500
9, 000
9,500
10, 000
10,500 3
11, 000
11,500
12, 000
12,500
13, 000

e

B

i
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Plastic Yielding at a Crack Tip

James R. Rice*

4 Abstract: A model for plastic yielding near a crack tip, based on ideas

of Dugdale and Barenblatt, is examined for the case of a through the thick-
fg#e crack in an elastic plane. General methods of solution for the de-
formation and stress distributions, accompanying original loading, unload-
ing, and cyclic loading, are given for a class of cracked configurations
loaded symmetrically about the crack line. A principal result is that

~ for oases where the size of the zone of plastic deformation is small compared
Yo planar geometric dimensions, stress and deformation near the crack tip
are determined solely by the Irwin elastic stress intensity factor for
original loading. Similarly, for unloading and cyclic loading, variations
_ in stress and deformation near the crack tip are determined by correspond~
ing variations in the stress intensity factor. Implications of results
for the mechanics of fracture and fatigue crack propagation are discussed.

duction

The precise determination of the influence of plastic yielding on the
deformation and failure at a crack tip is a difficult and presently un-
_resolved problem. Yet such information is needed for accurate predictions
of the behavior of cracked bodies under static loads causing fracture and
repetitive loads causing fatigue crack propagation. Considerable progress
has been made by McClintock (1) and co-workers in the special case of cracked
bodies under anti-plane loadings occurring in torsion and longitudinal shear.
But predictions in the technically important case of tensile loadings per-
pendicular to the plane of a crack are presently based, in essence, on an

_ elastic stress analysis or an analogy with elastic-plastic solutions for
longitudinal shear. Such an elastic analysis has been used by Irwin (2} and
Orowan (3], in extending the classic work by Griffith (4) on fracture of
brittle bodies, to develop a criterion of fracture at a crack tip for ductile
materials. Paris {5,6) has further used the elastic stress analysis to
determine the parameters influencing the rate of propagation of a growing
fatigue crack. Aside from more or less empirical corrections to the elastic
solution so as to account for plastic yielding, the influence of ductile
material behavior has not been taken into consideration.

The role played by plasticity is to some extent clarified by the analysis
of a highly simplified model presented here. The model for the influence
of plastic yielding, to be described below, will be called the rigid-plastic
strip model. The work is motivated by the Barenblatt (7) approach to
brittle fracture and by a paper of Dugdale (8) on the yielding of steel

*
Assistant Professor of Engineering, Brown University, Providence, R.I.,
U,S.A.
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sheets containing slits. Goodier and Field (9) and the writer, in an
unpublished report (10], extended the work of Dugdale by discussing the
problems of static fracture and fatigue crack propagation, respectively,

through analysis of essentially the same simplified model for the influence

of plasticity. The intent of this paper is to extend the analyses of

(8,9, and 10) to a wide class of crack problems, to point out the relation

of elast:?.c solutions to the elastic-plastic solutions of the strip model,
and to discuss implications for the static fracture and fatigue of cracked
bodies, Only the case of Straight, through-the-thickness cracks in in-

finite planes loaded so as to induce a state of plane strain or generalized
plane stress Symmetrical about the crack line is considered. Some relevant

results from the elastic solution of crack problems are summarized first.

Elastic Approach to Crack Problems

The elastic solutions to crack problems reveal that stresses are

singular at a crack tip.  For the type of Plane problem considered here it

has been shown (11) that the stress Sy acting (with reference to figure 1)

directly ahead of the crack tip (x=0)"at points along the x axis always
has the functional form M

Sy = KGrxy® +0(x%) i (1)

Ht?re K is called the "stress intensity factor" and depends on geometric
dimensions such as crack length and linearly on the applied loading in a
manner which may be determined by a complete solution of the elastic
boundary value problem. . The expression O(x‘f) denotes other non-singular
terms in the complete expression for 6%,. Retaining only the singular

term of (1), which clearly dominates the elastic stress field near the
crack tip, it ig seen that the influence of loadings and crack geometry
on the elastic stress field near the crack tip is felt solely through the
stress intensity factor X,

Thus if plastic yielding occurs only in a small zone near the crack
tip and does not seriously redistribute the Stresses, the factor K is a
single parameter which determines approximately the stress state near the
cra?k tip, and fracture will occur when K reaches a critical value charsc-
teristic of the material under consideration. This is the essential
result of Irwin's (2] fracture theory; the result is usually obtained
through an énergy balance approach, expressing the fracture criteria as
the achievement of a critical value of the energy release rate (2]

ﬂ: -‘J#Kz (2)

where G is the shear modulus and 1= 3-4¥ for plane strain and n = (3-v)/
(1+v) for generalized plane stress, v being the Poisson ratio. The
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fracture criterion based on a critical value of energy release rate is
_ssen, from (2), to be equivalent to the achievement of a critical stress

intensity factor. Actually experiment shows (2) that the critical stress

intensity factor varies considerably with plate thickness for thin plates.
This is presumably due to a transition from a plane strain deformation

involving slip in the plane to a plane stress deformation which may in-
volve slip through the thickness, a three dimensional effect which quite
naturally is not reflected in the plane elasticity solution. For this
reason the critical stress intensity factor is in reality dependent not
only on the material under consideration but, for thin plates, also on the
plate thickness.

In the case of cyclic loadings, if again the zone of plastic deforma-
tion is small and stresses are not seriously redistributed, the history
of variation of the stress state near the crack tip depends approximately
only on the history of variation of the stress intensity factor K. Thus

_one expects the rate of fatigue crack propagation to depend on the varia-

tion of K, and this is the result found by Paris. Further, it has been

_ e#xperimentally determined (5] that for cyclic loadings the crack growth
~_rate depends primarily on the amplitude of the cyclic variation in K and
13 relatively insensitive to the mean value of K.

In summary, the results of the elastic analysis are that all problems
dealing with the static fracture and fatigue of cracked bodies and in-
volving widely different loadings and geometries are essentially identical

_ problems with the effect of a particular loading and geometry sensed only

through the relevant expression for the stress intensity factor, X, provi-
ded that plastic yielding does not effect a major redistribution of stress.
In what follows, by the analysis of a simple model for the influence of
yielding, we shall attempt to see how plastic yielding may modify these
results and to what extent the elastic stress intensity factor determines
the elastic-plastic solution.

4s a preliminary, the Westergaard (12) method of solution is summarized
for plane elasticity problems symmetrical about the x axis. Where F(z)
is an analytic function of z = x+iy, stresses may be expressed as

oy RQ{F04'+YIM{qu

% = Re{F@)} - y L.{Fi} (3)

ij = =y Re{F"(z)}

For cracks along the x axis F(z) is sectionally holomorphic with a line
of discontinuity corresponding to the crack and with an inverse square
root singularity at the crack tip. The stress intensity factor is, by
comparing (1) and (3), and supposing the crack tip to be at the point
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x=c,
i = T
= Re {&;mc (2m(z-0) F(z)} ; (4)
The displacement in the y direction is
w QL - ]
v -e ki jc Faide} - 5L yRe{Fa@} (5)

:Eer; :C[} is agatin the shear modulus and 1 is defined as above in terms of
€ *oisson ratio through the form appropriate for plane strain
generalized plane stress. i .

Rigid-Plastic Strip Model

As a.flrst step beyond the purely elastic treatment of crack problems
a model is considered which introduces into the analysis some features of’
the ;?l?.stic yielding at the crack tip, but at the same time presents a
sufflcl?ntly simple mathematical problem so that a complete analysis may
be carried out. The model through which it is proposed to simulate the
response to loadings of a cracked elastic-plastic plane, as in figure 2

plgnes Joined together along a strip of rigid-plastic material, with a
void in ‘f:he strip material simulating the crack. The strip i; rigid-
plastlc_ln the sense that when a y direction normal stress, ¢+, acts on
'f:he strip, the material does not extend or contract in the y girection
if IO‘yI< s'm(where Sm is the yield stress) but is capable of unlimited
def?mation if [03,} =6m- It is assumed that the material offers no
resistance to extension or contraction in the x direction. The plastic-

strip may be thought of as the lastic analog t
foundation models. ? 8 70 Tl fmown elastle

?‘he strip model is, of course, a rather incomplete abstraction of
reality; thg zone of plastic deformation has been artificially confined,
work'ha:f'denlng has been ignored, no account has been taken of the influence
of.‘bll.axlal and triaxial stress states on the yield condition (a.lthough
this is not a particularly severe restriction for thin sheets under plane
stre§s), and resistance to extension or contraction in the direction per-
pent.ilcu.lar to loading has been ignored. Nevertheless, the rigid-plastic
st)f'lp model does introduce g yielding type behavior into the problem at
pomt:?* ahead of the crack where one knows that plastic relief of high
elastic stresses must occur.  Further, although the model is clearly in-

s;:h as the plastic zone size, the functional dependence of plasticity
effects on external loadings and geometric dimensions, and the behavior
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upon unloading and subsequent reloading.

Two general classes of cracked infinite planes symmetrically loaded
about the crack line will be considered: 1) bodies sustaining semi-
infinite cracks extending from x=0 to x=cowhere a is the distance of the
crack tip from some fixed point, as in figure 3(a), and 2) bodies sus-
taining a finite crack extending from x=0 to x=-2a for which the loading
is also symmetric about a line perpendicular to the crack center, as in
figure 4(5). The corresponding rigid-plastic strip models are shown in
figures 3(b) and 4(b), where the zome of plastic deformation,a), has been
removed from each strip and stresses of yield strength magnitude §g, which
the plastic material induces on the elastic half planes, have been drawn
over the region w of plastic deformation. Because of the properties
assumed within the rigid plastic strip, the solutions in the elastic
regions of the elastic-plastic problems of figures 3(b) and 4(b) are
simply the elastic solutions to crack problems where the lengths a are
replaced by lengths a+w, and the yield stress 6y acting over the distance

w is added to the external loadings.

The problems of figures 3(b) and 4(b) can be solved in general terms,
sufficient to cover all possible crack problems of type (1) and (2) above,
We assume that the stress intensity factors and Westergaard stress functions
of the elastic solution to the crack problems shown in figures 3(a) and 4(a)
are known and denote these by
K£1)(a), Fg”(z,a) and ng)(a), ng)(z,a) for the semi-infinite crack and
finite crack cases, respectively. Let the solutions to the crack problems
defined by yield strength loadings 6 acting ovez- the distances @ at the
crack tips (see figures 5 and 6) be denoted by K ;,)(w), F§1)(z,w) and K.E(,z)
(W,a), F(z)(z,w,a) for the semi-infinite and finite cases, respectively.
3ince ong is interested only in superposing solutions, the fact that
physical cracks loaded as in figures 5 and 6 would have one side of the
crack running into the other is, of course, of no interest.

The size of the plastic zone,®, is determined by the condition that
stresses should be bounded at the outer edges of the plastic zone. This
means that the stress intensity factors due to the external loadings (with
a replaced by a+w) and due to the yield strength loadings should sum to
zero, and thus @ is the solution of

)
Ke (a+r@)+ Ki'lwy =0 (6=1)
Ke (a+@)+ Kp'(w,a)=0 (6-2)
for the two classes of problems considered. The Wester stress

functions for the upper elastic half planes of figures 3(b) and 4(b) are
obtained by adding the stress functions of the external loadings, with a
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replaced by a+@ and 2 replaced by z-®, to the stress functions of the
yield strength loadings shown in figures 5 and 6. Thus the complete
stress functions for the semi-infinite crack and finite crack cases are

Fem(z-m,a.+w) + FP(')(z,w) (7-1)

(O}
F (z)

@
Fw<z) F,_m(z—cu,a+w) t FP'(z.,w,a.) 5 (1-2)

respectively, where the «'s are determined by (6-1) and (6-2), respective-
1y. The solution of the rigid-plastic strip model for which Ke and F,

are known functions is thus completed if Kp and Fp are known; expressions
for the latter are given below. The Westergaard stress functions F£1
(z,0) and sz (z,0,a) are obtained by using the solution to concentrated
wedging force loads on a crack as a Green's function to generate the
solution for distributed loads of intensity On- The algebra is tedious

and details will therefore be omitted. The resulting solutions, which
may be readily checked by seeing that the boundary conditions of figures
S and 6 are satisfied (with proper interpretation of branch cuts), are

)

= . 26% Y £
p (z,w) = HM[(ztfw)z -fM'(z(-”w)}iJ (8-1)
(2) 2 ., -lf &
FP (Z,wa) = -G (1 - 7 4w (aw)J(Em% (8-2)
-t L t 2
*Sn {1 o (g (i aary)

The corresponding stress intensity factors for the two classes of problems
under consideration are, by an application of (4),

)
Ke (w) =-2 )2 &, /& (9=1)
k (2) 2, -7 &

P (@)= ~0;, Vr@rw (1- 2 uw aﬂo)] . (9-2)

Equations (6-1) and (6-2) for the size of the plastic zone, &, become

2/F 65015 = ke w) (100
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Snim(@ro) (1~ Fa(zdn)) = ke® (arw) (10-2)

An important result follows by rearranging the above two equations in the
form

o) z "
w = TZ_mT[I\’e (a+w)] (11-1)
(2)

- ¥ A+w)y _
w a.{/.ser.[l ‘g:‘/é?w,] If

- 2 2

=3+ g@;[ke(’(‘”‘”’](a%;)*““‘i 23

-2

Assuming @ to be a negligible fraction of a and neglecting all terms of
order ®w/a in comparison to unity, one has Kq(a+w) =~ Ke(a) = Key and both
(11-1) and (11-2) result in

w ~ St (12)
Om

- Thus when the scale of plasticity is small (w«a), it is seen that for

all crack problems, irrespective of the manner of loading, the plastic
zone size depends on the loading and geometry only through the elastic
stress intensity factor Ke. By considering some specific loadings in

the next section it will be seen further that the entire stress and dis-
placement field near the crack tip depends also on the loadings and geo-
metry only through the stress intensity factor Ke in the case of small
scale plasticity, although a more complicated dependence is indicated
when  is a substantial fraction of a.

Equation (12) and subsequent small scale yielding equations are
derived from stress fields for cracks in infinite planes. However, it
is easily seen that all expressions given for small scale yielding are
also valid for cracks in finite planes, provided that the plastic zone
size is negligible not only in comparison to crack length but also in
comparison to all planar dimensions of the cracked body. When this
condition is met, the computations of (8-1) and (9-1), for effects of
the yield stresses restraining the crack surfaces near its tip, are
valid and the effects of finite specimen dimensions are sensed only
through the relevant expression for the elastic stress intensity factor,

Kay appearing in (12).
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o1 A measure of the_s plastic deformation near the crack may be obtained by
“0lving for the y direction displacement, v(x), of the rigid-plastic strip

naterial at points along the x axis. Noting that there is zero displace-
ent at x =w, equation (5) results in

V(X) =_*4+]?II~’{£‘F(Z) dZ} (13)

Eix the sequel displacement results are given in a form valid for either
ane S'.brain or plane stress. However, the strip model is clearly more
ppropriate under Plane stress conditions where yielding takes place on

f],'anes inclined at 450 with the x-y plane and a maximum tensile stress
ield condition governs.

olutions to Particular Problems

?‘he results of the analysis are further clarified by considering in
etail some Particular problems representative of different types of
rack ]..oadings which arise in practice. Two problems, each representing
particular case of the two general classes considered in the last section,
"¢ stated below and solved by the general methods of the last section:

1) an infinite plane with a semi-

ed forces P Per unit thickness at a
0Wn in figure 7.

infinite crack openéd by concent-
distance a from the crack tip, as

2) An infinite plane with ini
a finite crack of length 2 ned b
iform tensile stre £61. 28 qre T

S8 §"at infinity, as shown in figure 8.

4s may easily be verified, the Westergaard stress functions and, from

), the corresponding stress intensity factors, of the elastic solutions
the above Problems are

) p a 0
Fe (z,a) = = ¢ =¥z P (14=1)
m(Z+a)\l 2 , ke, Q) Vna
Féw(z dy= TLz+3) (2)
! [(zfa)‘_.a‘]}i KC @)= G_Vﬂ—&. (14—2)

tually, a uniform compressive stress @y = -¢*must be added to the

e8s function of (14-2) to satisfy the boundary conditions of figure 8.
Cé such a stress field has no influence on the stress intensity factor
strip model solution, it will be subsequently ignored.) The rlastic
8 ?izes are obtained by inserting the expressions for Ko above into
ations (10), using (10-1) for problem 1, and (10-2) for problem 2.
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he resulting expressions for the respective plastic zone sizes are

2 i 15-1)
w=F((1+ s )5 1 ] (
w=a(sec(ZE)-1 ] (15-2)

The complete stress functions for the plastic strip model are found
through inserting the elastic stress functions, F,, of equations (1?) into
the formalism of equations (7), where the functions Fp1)(z,a7) and sz)(z,a),a)
securring in (7) are given by (8). It is convenient to repress explicit
dependence on the external loadings P and (& by writing the loads as functions
of plastic zone size,w), through an inversion of equations (15-1 and 2) res-

~ pectively, There results, after some manipulations,
(1) 28, - w VA (w(z—u)]k (16 1)
F(z)= 227 ftal( 355 ) % e -
@)= 2 o 1w VA 2arw0 e
Friz = F tal [(325) (———zu&m ~214] (16-2)

for problems 1 and 2 respectively, where the value of @ for each problem
is given in terms of the relevant loading, P orG; by equations (15).

If one considers values of z of the order of @ (that is, confine
attention to points near the crack tip) and supposes that @ is a negligible
. t‘ractiion of a, the last term in (16—1§ is negligible and the factor of

' (—Z{%)"’ in (16-2) differs from unity by a negligible amount. Thus in the

case of small scale plasticity both F(1)(z) and F(Z)(z) become,

for points near
the crack tip,

F(z) =;%"w,(zo—uw)z

(17)

b4

which shows that the two problems treated here, involving different loaedings
and geometry, have stress and displacement fields near the crack tip which
are functionally identical when ;p«a. Recalling (12)
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w:l&ﬁt

26 (12)

appropriate when w<«< a, (
12) for the two particul
panding equations (15) as
taining the first non-
13ity factors as given
e of small scale plast
>1ds depend on external
"eS8 intensity factor Xe
Ve remarks are,
the influence of
) for the Plastic zone size

this may be readily verified independently
ar problems presently under consideration by
a Taylor series in the applied loadings,
2ero term, and comparing with the stress in-

by equations (14)), and it is seen that in the

loadings and geometry only through the elastic
- When w is a substantial fraction of a the

of course, no longer valid and quantitative estimates

and (16) for the stress functions.

The displacements of th
stic deformation and
O0< xew y are,

e rigid-plastic strip give a measure of the
may be calculated from (13).
for the two problems

Uy = L2 G 5K g 10 (imx /e )%
X) 2nG {(l*-wx-) 3% IOJ( I-(/‘X/w)}i]

+ Log(LI130)" +( 1~ xf00) %
J (/'f'a/u)%_(/_x@}%

{Ip; [ H[za H'HX!K(I—X I)g]

I =CEROK (1 xsi )%

(18-1)

(‘)(x) - (:Z‘f/l 0",,8
tnG

-+ %) 6 [ 'ﬂ/"f ;,*,:7’: AETY
= 7 a5 )KU—X/‘*‘/K] ¥

>Sponding maximum rigid-plastic strip displacements, Vo, Occurring at

rack tip x=0, are obtained from (18-1) and (18-2) after an applica-
of L'Hopital's rule, yielding

(19-1)

W < sz;rzg'"w‘[ /+2/7W+ ‘fa‘-)'/‘*“(%)sz
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The results, valid
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0 = L [ F Ly 2

for the semi-infinite crack under wedge forces and finite crack with
stresses at infinity, respectively.

(19-2)

The expressions for displacements in the
may be obtained directly from F(z)

(to 1):»3 the limit of F\'/(2) and F(2
13

case of small scale yielding
of equation (17) which has been shown

(a) when w«a. Upon application of
one obtains strip displacements

i
vix) = %“{(I—X,ﬁ)}{-'zla‘g /'7[‘%]} )

~ for the limit of v(1 )(x) and v(2)(x), and maximum displacement at the
crack tip

Vos QtUGw _ (1+1) fg*
° 274§ /6GSm

‘ for the limit of v[g’) and vsz), where (12), appropriate when g« a, has

been used.  Equations (20) and (21) may, of course, be obtained direct-
ly from (18-1,2) and (19-1,2) by neglecting all terms of order &/a.

(21)

The results of the detailed solutions given in this section will be
~ used later in a discussion of static fracture and fatigue. The solution
~ of other crack problems involving different loadings and geometries may
~also be obtained in analogy to the methods of this section and the last.

Of particular interest from the point of view of practical applications
would be solutions of the rigid-plastic strip model for configurations
such as a central crack in a finite Plane body and an edge crack extend-
ing into a plane body from a free surface. Since the methods involved
in the analysis of the strip model are essentially the same methods used
in the conventional elastic treatment of crack problems (in fact, the
entire plastic strip analysis may be carried out once the elastic
 Green's function for wedging forces on the crack surface is k:nown),

methods of solution as in (13-16) might be of use for such problems.

Unloadiggind Repeated Loadings

When the load on a cracked body is decreased one expects the yielded
material near the crack tip to be forced back toward its original posi-
tion and thus yield in compression. This phenomena is investigated

here through the rigid-plastic strip model. The analysis is surprisingly
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simple, for in solving the original loading problem most of the work has
already been done.
Suppose a cracked body is subjected to a set of external loads propor-

tional to some loading parameter L, and that a is some geometric dimension

indicating crack length. Then in solving the original loading problem
a relation has been determined of the type (15) giving the plastic zome
size as a function of load, yield stress, and crack length in the form

W= (L,6m,a) . (22)
The Westergaard stress function for the elastic region above the strip
has the form (where, as in deriving (16), dependence on the load L is
converted to dependence of @ through inverting (22))

F(z)="%(z,w,a,5m) , (23)

and strip displacements may be written in the form, analagous to (18),

Vix) =V(x,w,a,cm) , 0<X<W , (24)

Now suppose the load is decreased by an amount AL to L-aL. A
pert of the original plastic zone goes into compressive yielding; we
shall suppose this zone to have length @' and call it the zone of
reversed plastic deformation. With reference to figure 9 where only
the upper half plane is shown, the elastic solution which must be added
to the original elastic solution is one in which the crack is pushed
shut with a load oL and in which this closing is opposed by a stress
26, acting over a distance @' in front of the crack, the additional
strip displacement being zero elsewhere. Clearly @' is chosen such
that that total stress intensity factor at x=e' due to load AL and the
boundary stress 26y sums to zero. Thus the additional elastic solution
is'f‘unctionally identical to the original elastic solution except that
L is replaced by -4L, 63, is replaced by -264, and Wis replaced by ©'.
The reversed plastic zone is, therefore, from (22)

W= Q(-al , -20m ,a) (25)

The stress function and displacement after unloading are obtained by
adding to the original expressions (23) and (24) the expressions due to
the added stresses shown in the center of figure 9, the latter
expressions being obtained from (23, and (24) after making the
substitutions indicated above. Thus, after unloading,
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F(z)-'}’(z,w,a,d‘m)"-?(z,w’,a,-2—07-') » (26)

VX,0,d,6m) +V(X,w,ad,20m), 0<X<w’

Vix) = (27)
VX,w,a,cm) | w<x<d , a

Details of the unloading solution may be readily obtained for the
two specific problems treated in the last section through the formalism
of equations (25-27). For the case of wedge forces per unit thickness
P opening a semi-infinite crack and of tensile stresses ¢”opening a finite
crack, suppose the loads are decreased by amounts 4P and 4§, respectively.
Then through use of equation (25) and equations (15), the sizes ' of the
zones of reversed plastic deformation are

E! )

: (28-1)
oy

(28-2)

w'= asec(ZL0) /)

respectively. By evaluating (27) at x=0 and through use of equations
(193), the final crack tip displacements in the two cases after unloading
are given by

vt/ = -—(Z¥;¢”/ (w ~200") 420 /7 ca *f}g" (Zza')’)k]

~aol by (Cr g )L Y} (29-1)
\/.,()) - (Z‘;’{;(M&{ /"J (t+%)-2 /? (/fﬁi,/[{, (29-2)

respectively. Results for the complete stress and displacement

functions after unloading may be filled in through use of (26) and (27)

in conjunction with (16) and (18). These lead to lengthy and unrevealing
#xpressions which will not be recorded here. Instead, the complete
unloading solution will be given in the case of small scale plastic
yielding (w',w@a), a case in which it has been shown that the stress
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and displacement fields are functionally identical for all problems and
that the influence of loads and geometry is sensed only through the
elastic stress intensity factor, Ke. Instead of proceeding to this case
as a limit of the two unloading solutions considered above, the limiting

l?ading solutions already derived for the case of small scale yielding
will be used directly.

Suppose that the cracked body is loaded so that the elastic stress
intensity factor is Kg.  Then o (here assumed <« a) is given by (12),
the stress function by (17), and disylacements by (20), which are the
Special forms of (22), (23), ana (24 appropriate in the present case.
Now suppose the loads are decreased so that the stress intensity factor

decz-ea;es by 4Kg.  Then the zone of reversed plastic deformation ', is
by (25

W' T _(4afre)?
7

2
Erary ( recal/ w:—g—%‘% Joavnt (2g)

Equation (26) for the stress function after unloading becomes

/, ’
Fa - Slad@es)iz )%y | On

and the final di

splacements of the material in the reversed zone are,
vy (27),

(0= BT foy i s 10

___/' 1+ (1x/u )% Y
Loy [L2LAL) ) (LG o

odx¢ w’

The final displacement at the crack tip x = 0 is
= (M+1) ¢
Vo oI (w2ury = 1210 () s -fares], 3
/é’éTGC» ’

where (30) has been used.

If the cracked body is completely unloaded so that AKy =K, the
Teversed plastic zone (30) is seen to be one-quarter of the original
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lastic zone and the strip displacement (33) at the crack tip is seen to
# une-half of the displacement before removal of the load. Equations

+ 29, 30, and 33) further indicate that the reversed plastic zone and
'éhanga in plastic deformation depend only on the decrease in load, being
independent of the original load level. If unloading is followed by a
##loading which brings the load back to its original level, it is easily
shown that the solution is identical to the solution before unloading.
Thuz during a cyclic loading the model predicts a cyclic deformation in
the reversed plastic zone dependent only on the amplitude of load fluc-
fuation and independent of the mean load.

llemarks above have some relevance to experimental studies of plastic
dsformation near a crack tip such as (17,18), where cracked specimens

are studied after unloading, as the present results indicate that unloading
sarkedly alters the state of stress and deformation.  Further, it appears
that an unloading solution given in (17) for the finite crack in a tensile
field is incorrect, leading to results at variance with (28-2) and (29—2).

Cgmparison With an Exact Solution

Some idea of the adequacy of the rigid-plastic strip model may be
abtained by comparison with an exact elastic-plastic solution. Such is
svailable from the work of McClintock (1) for the case of longitudinal shear
_ in which the deformation consists of warping displacements only in the z
_direction (perpendicular to the crack x,y plane), and the only non-zero
#tresses are the shears {xz» Tyz. Such anti-plane problems are solved
{ﬁy an analytic function H(z) where shear stresses and warping displace-
ments are given in elastic material by

Tyz. +4«'-sz =H(z)

& In{[H@dz}

(34)

Consider a semi-infinite crack along the negative x axis with tip at
the origin, and for which the elastic solution is

H@) =KkyGrz)” (35)

where Ky is the stress intensity factor for warping displacements. The
exact elastic-plastic solution of this problem has a circular yield zone

of diameter w with center at x =w/2, Where @ is the yield stress, the
#olution is

Trz =0 , T2 =T

n F/astl‘c zone /Z - %)/(%_)‘ (36)
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L
Hz)= 1T, /g{z -2)>  in elastic zne ’7'12’7%)‘
with

W= . (37)

Ak

<

Postulating a rigid-plastic strip model for this case, the solution may
be shown to be

Hez) = 25 ii( )% (38)
with
w=I __I%iz_ . (39)
n

Solving for the maximum displacement w, at the crack tip from (34), for
the exact solution (the displacement field actually has a discontinuous
Jump of 2w, at the crack tip in the exact solution!)

e (40)

. (41)

Comparing (37) with (39) and (40) with (41), it is seen that the rigid-
plastic strip model predicts a plastic zone about 20% too large and a
maximum crack tip displacement about 25% too small. The relatively
close agreement between the exact solution and the results of a plastic
strip analysis suggests that artifically confining the zone of plastic
deformation (by requiring, in the model, that plastic effects take place
only in the rigid-plastic strip of material ahead of the crack) does not
introduce an appreciable error in the prediction of gross features of the
deformation, such as, for example, the plastic zone size and tip dis-
Placement, This accuracy of the strip model is further clarified by the
longitudinal shear solution of (19), and by the experimental results of
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Dugdale (8] and Hahn and Rosenfield (17) in tests of plates with slits
under tensile loadings.

Fracture and Fatigue

The strip model does not yield enough information on the details of
plastic yielding to permit the absolute prediction of fracture strengths
of cracked bodies in terms of material constants and geometric dimensions.
However, the model may be utilized in a semi-empirical method to predict
fracture criteria from a limited amount of experimental data. The
golutions presented earlier for plastic zone size (12), stress function
(17), and strip displacements (20,21) indicate that when the plastic zone
3ize, ¥, is negligible compared to crack length, a, the stress and defor-
mation near the crack tip depend on applied loadings and the geometrié
configuration only through the elastic stress intensity factor, Ke.

Thus, in the case of small scale yielding, one expects fracture to occur
when Ko reaches a critical value in agreement with the Griffith-Irwin
criteria. Let Kg be this critical atress intensity factor at fracture,

as obtained from some experiment on a cracked body for which the plastic

_ zone size at fracture is negligible in comparison to geometric dimensions.
~ The corresponding plastic zone size,df, is from (12)

2
wg = z )’ (42)

& foyhd

_ and crack tip displacement, vg, is from (21)

f_ _(q+1)Gm (43)
Vo = 276 w,«. .

For subsequent work it will be convenient to view wf, the plastic zone

size at failure in a small scale yielding fracture experiment, as a
characteristic length defined by (42) for a given material, temperature
of test, and plate thickness. It will be seen, then, that fracture
criteria depend on the ratio of crack length to this characteristic

length.

The choice of a fracture criteria when yielding is not on a small
scale is somewhat arbitrary in the absence of detailed features of the
plastic deformation. However, it is clear that a criterion should be
based on parameters describing local behavior in the immediate vicinity
of the crack tip where fracture initiates. It is then reasonable to
assume fracture occurs when the maximum strip displacement, Vos at the

crack tip reaches a critical value, vg, as given by (43), since Vo gives
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a measure of the deformation near the crack tip and may be expected to
reflect the influence of applied loadings and geometry in an essentially

correct way. Fracture criteria are derived below by setting Vo =V, for

the cases treated earlier of wedge forces per unit thickness P opening a
Semi-infinite crack at distance a from the tip and of tensile stresses
orening a finite crack of length 2a. Equating (19-1) and (19-2) to (43)
and cancelling the common coefficient, one obtains

SyV7a = k& (46-2)

Comparison with (45) is facilitated by replacing Kg through (42) which
definesWe. There results

waf = 2/'5} (47-1)
wf=w{1+2@;[(/+g)’/z+(%_}z]j (44-1)

\ = 22 [y (47-2)
e B &&aj (rr2), (44=2) O T ./:

Trespectively, for the two cases. Using equations (15) to express for the corresponding Griffith-Irwin fracture criteria.

dependence on the applied loadings, after Some rearrangement equations
44) yield for the respective fracture loads Pr and 0¢

we_ 1 Pr vk ,
a ‘zi(/»‘(%{)‘(?”";?)] —I}(/+&JZI(%XO'_,¢Q%

+( 1+ (-E’-ff(_@to_mwf D’A}]. (45-1)

B3ttt 2y

A comparison of the variation of fracture stress, 0© f, with half

_crack length, a, as predicted by the rigid-plastic strip model (45-2)
and by the Griffith-Irwin criteria (47-2) is made in figure 10, which
_ clearly points out the agreement between the two criteria for small
scale yielding (ll.)f<<a). Numerical calculations indicated that the

Griffith-Irwin fracture stress exceeded the strip model fracture stress
by 1% when a = 204}, 5% when a = 3.7, 10% when a = 1.8@, 20% when a =
0.9%, and 40% when a = O.%0. Tt is noted that the strip model predicts
fracture at § =6 as a - 0 which corresponds to yielding of the entire

. rigid-plastic strip.

(45-2)

Equation (45_1) may not be solved explicitly but gives an implicit one and experimental evidence (8,171 confirms the ability of the model in
predicting gross features of the yielding behavior. It is noted that

. ) ) Pf the solutions presented for the strip model are independent of the strip
relation between the dimensionless wedge loading at fracture, e thickness in the y direction. Indications from (17) are that by identi-

fying this height with plate thickness t so that the average plastic
strain is 2v0/ t and supposing fracture to occur when this average strain
reaches a value characteristic of fracture in a tensile test, plane stress
_ fracture strengths and their variation with plate thickness may be pre-
dicted with reasonable accuracy.

and the dimensionless crack length, 60_? :

The Griffith-Irwin fracture theory predicts failure when the
elastic stress intensity factor reaches the critical value Kg. Taking

the appropriate expressions for Ke from (14), this criterion becomes
Failure criteria similar to equations (45) may be obtained for other

crack configurations by solving for the crack tip displacement, Vos Of
the corresponding rigid-plastic strip model and equating it to vg of (43).
Of particular interest would be fracture criteria for edge cracks, cracks

Yz By _ p (46-1)
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in finite sheets, and cracks emanating from cut-outs. Generalizations

of the strip model may also lead to useful results. Essentially, the
model allows the type of non-elastic material behavior of interest at the
crack tip (in the present case, plastic yielding) to occur in a small
artificially confined zone (the strip) ahead of the tip. Mathematical
complexities are reduced since the non-elastic behavior enters the analysis
only through boundary conditions imposed on the elastic regions bounding the
strip, in which such behaviors as workhardening and strain rate sensitivity
may be allowed.

Solutions of the strip model for unloading and repetitive loadings
have implications for fatigue crack propagation. The general solution
of (25) and (27) for unloading indicates that the zone of reversed plastic
yielding and change in strip deformation depend only on the decrement in
applied load, and not on the load level before unloading. Thus, under a
cyclic loading, the strip model predicts a cyclic plastic deformation near
the crack tip which depends only on the amplitude of load fluctuation and

not on the mean level about which the load is cycled. Associating the growth

of a fatigue crack with this cyclic deformation, one expects the crack
propagation rate to depend primarily on the amplitude of load fluctuation and
to be comparatively insensitive to the mean load level. This conclusion

is supported by experimental results cited in (5,6) and other references
therein.

When the zone of reversed deformation is small compared to crack length
(W « a) the unloading solutions of (30), (32), and (33) are valid, and it
is seen that the cyclic plastic deformation under a fatigue loading depends
only on the amplitude of variation, aKg, in the elastic stress intensity

factor. Thus, for small scale reverse yielding, the model suggests that
crack propagation rates depend on the geometrical configuration of the
cracked body and fluctuations in applied loadings only through the variation
in the elastic stress intensity factor. This is the conclusion reached by
Paris (5,6} and verified experimentally by a wide range of data, from
several investigators, for different metals and different cyclic loading
conditions, including in (6] some data obtained under random loadings. A
fatigue crack growth law in which the crack extension per load cycle is
proportional to (AKe)4 is derived in (10] from the unloading solution for
the strip model under the assumption that failure by fatigue occurs at a
material point ahead of the crack when the total of plastic deformations at
that point (as measured by the sum of absolute values of the reversing strip
displacements) reaches a critical value. This is in agreement with the
power law proposed in (5] as the best fit to the entire range of available
data on crack propagation. Corrections for cases where the scale of
reverse yielding is not small may be made by using equations such as (28)
and (29) to describe the cyclic deformation, in lieu of the small scale
yielding equations (30) and (33).

Certain important aspects (in addition to three dimensional effects) of

302

Plastic Yielding at a Crack Tip

the fracture and fatigue of cracked bodies, while presumably due to plastic
yielding at a crack tip, seem not to be predictable through an analysis of
the strip model. One of these is the phenomena of slow growth (20}, whereby
catastrophic fracture does not occur all at once, but rather the crack grows
gradually after a certain load level is exceeded until, under increasing
load, a critical point is reached at which catastrophic fracture ensues.

An explanation proposed in (20), notes that plastic materials have history
sensitive deformation laws, implying that the distribution of plastic yield-
ing due to stressing the tip region of a stationary crack by increasing
applied loadings is different from the distribution of yielding caused by
extending the crack under stationary applied loads. Such a distinction
does not occur in the strip model. Another phenomena is the delay effect
(21) which occurs in the course of fatigue crack propagation under cyclic
loading when a very large overload is applied; the result of the overload

is to effectively stop the crack growth for a large number of load cycles.
Presumably, an elastic "shakedown" occurs through severe blunting of the
crack tip by large plastic deformations of the overload. The strip model,
on the other hand, predicts no change in the pattern of reversing plastic
deformation.
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