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ABSTRACT

The possibility of a micromechanical theoretical approach to the
problem of the plastic behaviour of material continua is outlined in
terms of Riemannian and non-Riemannian differential geometry, The
basic equations for yielding with its extension to cover thermodynam-
ical phenomena and those for the dual yielding are derived, the latter
being heuristically treated to afford a possible analytical theory of
fatigue fracture,

INTRODUCTION

This is a rather non-anslytical exposition of the principal
features of our approach to the microscopical mechanics of fracture
by differential geometrical methods, Our approach is partly a
rearrangement of the same objects treated by the conventional methods
with the picture of imperfect crystal lattices etc. By virtue of the
different techniques we can also be responsible for different facets
of the same problem, The generalization inherent in our standpoint
lets the term FRACTURE assume so comprehensive an implication that
not only fatigue but also yielding and certain thermodynamical phase
changes are unified and brought under the same general heading, To
one end of it is connected the dislocation theory of continuous
distribution by distant parallelism which originated in Burope and at
another as its dual emerges the concept of couple stress which is
being given much attention recently.

The material body is treated as an imperfect continuum in which
various kinds of anomalies are distributed to be represented by the
spaces of connection or generalization thereof studied in Riemannian
and/or non-Riemannian geometry, It has recently become well recognized that
the dislocation density is mathematically the torsion tensor and the
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1ncompetibility is the Riemann-Christoffel curvature tensor, However,
there is another kind represented by the concept which we call the
uuler—SChouten curvature tensor the importance of which should be more
emphaelzed from the Standpoint of the mathematical theory of fracture,
Tbls 1s what we have been handling for nearly two decades in connexion
¥ith our THEORY OF YIELDING((1], (21, (31, (41, (51).

we call a strain metric of naturalization of the material, A space
dual to it, called the stress space, is being given much attention
recently. As adjoint to this latter space S, Minagawa assumed a set
of equationgs which correspond dually to the equations of yielding and
have the same structure [6]. The dual eigen condition which may be
compared to the condition of fatigue fracture, as may the other eigen

Ceiﬁition to that of yielding, will be the subject we are concerned
with,

The analytical verification and physical meaning of the assumption
are afforded by unification of the stress space and the strain space
so that the critical condition at which the unified non-Euclidean
phenomena set ip includes Yielding, fatigue fracture and martensitic
transformation among others. The rdles of the stress and of the
1ncompatibility are interchanged in the dualism, The temperature has

I. YIELDING AND ITS GENERALIZATION

L, The Geometrical Terminology and the Multidimensional Picture of
Yielding

) 'The Suggestion to the multidimensional picture of yielding was
originally by an analogy with the buckling of flat plates, where
Plastic disturbances were compared to a certain non-Euclidean behaviour
of the materia] manifold so that they are represented by deviations
from the three-dimensional flat plate [1], [2]. 1In the subsequent
investigations continued to the present time, the validity of this
assumption was brought under more analytical and physical light, It
is, therefore, not merely an intuitional postulate, as was sometimes
skeptically inferred to, but upon the basis of more logical, even
p?agmatical Scrutiny, that we reconfirm the fundamental criterion of
Yielding summarizeq into a set of differential equations, which are
1n the representative case (Ca1, (31, (41, [77 ete.),

36

On the Geometrical Approach to the Micromechanics of Fracture

: 9,%(3”/”9,‘97(”) _ SA(O'X‘\QKM‘) =0 ; (l)

2 B.MMBMZ-),\W =0 ;
; | (2)
L A(B™a0w) - o =0

- e e e e e

where IT (7(:1,2,3) are rectangular coordinates of the material point
in undisturbed state, and ( Y ) means the direction of the surface
normal,  §™is the applied stress tensor, w a scalar or scalars
depending on X , and If“’v the tensor of the material property by
which the resistance to plasticity is represented at yielding, The
set consists of the field equation (1) satisfied in the interior of
the specimen and of the boundary condition (2) for the free surface,
Except the dimension number, they are entirely the same as the
equations of buckling of a plate which is free at the edges,

The homogeneous character of these equations should be noted since
they need to define a characteristic condition at which only the small
disturbance W can set in., Thus the stress standing in them needs to
be restricted so that the specimen goes into a sudden change when its
characteristic value is arrived at. Such is the case either for
buckling or yielding.

The quantity 2y can be multidimensional so that it has a number
of components or consists of more than one scalar A ( A=1,2,3,..)
Its geometrical meaning can easily be looked up in established concepts
in differential geometry. 1In the present case of small disturbances,
it is connected with the Euler-Schouten curvature tensor ([8],[4],[9})

Haa" = 2., (3)

where /I can bve restricted to £1,2,3 by taking account that the
direction of the meaningful (i.e, incompatible) deviation wh is
normal to the original manifold ((41,09]). 1In this picture the
deformed three-dimensional material is thought to be immersed in a
Euclidean space of more than three dimensions and its relative
curvature to the latter is described by HaM. Therefore, the defor-
mation at yielding may analytically be compared to the swelling out
of a three-dimensional manifold, initially flat, into a curved state
in a multidimensional space, which happens to be a generalization of
the swelling out at buckling of a two-dimensional flat plate into a
curved one in three-dimensional space,
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With this analytical feature one can also associate what the

curved continuous manifold physically signifies, taking account that it is

a picture not in the ordinary three-dimensional space but in a higher
one. Being the labels of the initial location of the material point,
the coordinates used in describing it can no longer agree with the
actual location after the yielding accompanied of necessity by an
incompatible deformation,

It is well known that from the Euler-Schouten curvature tensor is
constructed the Riemann-Christoffel curvature tensor of a Riemannian
space

Ri1i"= BHO™Hy" o

so that the latter is always accompanied by the former but the converse
does not always hold (see (31,081,091, etc.). Therefore, the relative
curvature }{';A, or the distribution of w” is a measure of a kind
of anomaly or generalized incompatibility

These are also summarized into a more general concept of holonomy
group propounded by French geometre Elie Cartan [10]. Its physical
meaning is that, wherever these curvature tensors appear, the connexion
between the elements of the material manifold is no longer the same as
it was initially before the anomalous deformation,

The concept of holonomy group comprises also a discrepancy due to
-ntervention of another kind of anomaly which is analytically repre-
sented by Cartan's torsion tensor [11], That it can be reinterpreted
as the crystallographical dislocation density in continuum terminolo
has been pointed out by us [3], as well as by some others ([12]’[13]§Y
?o that ig has become an object of interest of the metallurgist ([14],

15] ete. ).

In Cartan's terminology these anomalies correspond to the
discrepancies connected with a small circuit in the plastic manifold,
such as are obtained by connecting each consecutive pair of elements
on it., In others words, the anomaly is measured by the discrepancy at
the cut when the infinitesimal local topology is preserved everywhere

else while the metric is deformed. There can so come about a discrepancy

of location corresponding to the torsion and those of orientation
corresponding to the curvatures.

The relations between the deformed and undeformed manifolds are
anholonomic so that the anholonomic object, known in differential
geometry ({3),[16],[17]), occupies an important rdle in the recognition
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of plastic deformation [18], It is to associate particular sets of
anholonomic coordinates to particular deformation conditions., One
goes from mathematics to physics, from a macroscopic to a microscopic,
which is almost the same as atomistic, observation, at this,

To use an anholonomic picture, as well as that of holonomy group,
is to tear plastically the connected manifold into Pfaffian elements
(191, [20]. The curvature-and-torsion is a résumé of the torn state,

At this we need to emphasize that the language of differential
geometry and that of crystal lattice are approximation of each cther,
Which of them is more accurate needs to depend on the nature of the
problem and the scale of the phenomena we are concerned with (ef, [21]).

If we use a more global scale some microscopic anomalies are
statistically lumped into a large scale one. Conversely, a more
global anomaly may split into more than one unit of a more microscopic
kind [22]. Such is the case in the multidimensional picture of
yielding where the torsional anomaly, which is more microscopic,
apparently disappears being lumped into a curvature tensor by an
inverse process of tearing. Should one argue that the multi-
dimensional picture of yielding neglects the dislocations in the
specimen, one would miss the most subtle point in this connexion,

One more remark should be made in connexion with the foregoing,
Here is inherently the origin of the concept of the Cosserat Continuum,
the study of which is recently fashionable, It is defined as a
continuum susceptible not only of the ordinary stress but also of the
so-called couple stress. As has been well known as Boltzmann's axiom,
the couple stress originates when the volume element of the continuum
is not reduced to zero, which means that one cannct penetrate the
structure of the mechanics in the element, It is non-local in a
broad sense (cf. CONCLUSION). Its volume can be large enough to allow
a couple, of stress (if force or couple is concerned about), or a
pair of dislocations if the deformation is concerned about, The
resistance to the grouth of the Euler-Schouten curvature tensor has
in fact the character of a couple as the analogue of a couple on the
cross section of a plate,
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2. Origin and Structure of the Material Constants Bxxw;nd Material-
Energy Tensor

The physical meaning of the material tensor Bﬂxkvhas been
explored generally as well ag in close connexion with the analysis
of several different types of yielding., Whatever the physics so
concerged, it originates statistically as the average property of the
more @lchScopically non-uniform structure of the material, The
%ﬁ:st;on is to find tbe glements or objects which one can subject to
SuChp ;cesses of statlstlcs.. As we work with the differential manifold,
elements need also be given in terms of differential geometry,

ghel9b3ects of plasticity statistics could e geodesics in the non-

uc }dean maglfo}d, One can therefore start with a statistics of
g;g;lguogs dlstrlbu?ion Of-geodesics, or the set of geodesic deviations
. 'glyen geodesic, 'ThlS is brought to the thermodynamical criteria

V?rl?tlonal formulation, By some assumption, such as loecal

stat}stlcal isotropy or its generalization one can reduce it to a
cgn81derably simple form generalizing in a sense that of the principle
o genergl-relativity (cf. [24]). The material constant B originates
as coefficients of the terms in the Ricei tensor or Einstein tensor
Whilst the stress terms correspond to those assigned to the materiai—
energy tensor as its three-dimensional degeneration,

. SFrict isotropy needs to be excluded for the deformed manifold
Since }t would angull all components of B™. But the material and
i:sgitlgg nog;vanlshing tensor B™H* can still be statistically

opic, € analysis so far carried out on an isot i i
e b M ST N 1sotropic material

ns £ from the foregoing is also obtained then an important suggestion
ollows, The stress can be replaced by a more general material

snergy—tensor sgcb as related to the thermal effects, This is thermo-
ynamically anticipated since the pressure stands on the same footing

3. Analysis of Yield Points and Martensitic Transformation

- d.fbe manner of yielding naturally varies with the boundary
ndition and the stress distribution, We have some representative
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cases studied elsewhere, considerably in detail. We shall not repeat
most of them, e.g.,

i) Tresca's classical theory of maximum shear for an isotropic
material [26], [271], and

ii) also von Mises' criterion reached by introducing some statistics
from Tresca's [28],

iii) Apparently incomprehensible features of the empirical facts that
the yield type depends much on the stress distribution are

explained ([27], ([291),

We shall here present only some minor amendments in regard to quanti-
tative results of

(a) The problem of some of the apparently phenomenological constants
standing in the equations of yielding, shown to be derived somewhat

indirectly from the elastic constants (291, and

(b) Martensitic transformation and hysteresis there of [30].

(a) This is concerned with Poisson's ratio, By statistical approach,
one can argue that the constants B’ have the six-index structure:

1kl %3ke
Da F%:_%_Ca a[xux?’

where (j”kaare elastic constants, the bar indicating the average
and¥the fluctuation [7]. The indices i+ k,P ,F are reduced to
the three dimensional space and 7 and j to those normal to it,
Taking account of the symmetry requirement of C“™nd of the
construction, the formula can further be simplified,

If the material is isotropic, the elasticity tensor is reduced to
Young's modulus [ and Poisson's quantity w As the result we have

- v v
TJREpY e AT
D =w'E |, (6)
'l// Z/II
where
E/— ]—-V. E V/:z v
1+v 1—2v ’ 1l —v
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and Tw? has the dimensions of area,
If it is a priori known that the disturbance is two-dimensionally
restricted, we have, in place of (6),

D?J_E?Pi ~ E ! 7/]
= T

T=rrlv

(7)

Lo A ~
] On the other hand, if ¥ and , the directions of which are
directed to the outside of the three-dimensional Space, are
surpressed or fixed, the isotropy requires

TRFT [ —k —k
D =gl . (6')
-X —K !

whic@ should be compared with (6). The Poisson's quantity is thus
carried over to plasticity where it is multiplied by -1/(1 - V) or
-1. For an ordinary material such as mild steel, we have p = 1/3,
so that

/
K == ok
2 or 3

according as the disturbance is three or two-dimensional,

(b) The analysis of martensitic triggering has been carried out
assuming isotropy for the material and replacing the strees by the
temperature factor [36]., The field equation is then simplified to

Bodw + pTbdw =y (8)

where B is a constant factor , 7" is the absolute temperature,
and %7 1is a factor which is an isotropic summary of the entropy
criterion. The specimen is assumed to be sufficiently large so that

w = constant

at infinity,

42

On the Geometrical Approach to the Micromechanics of Fracture

Equation (8) is naturally reduced to one of the Helmholtz type

Ap + 94 =10 o

where 7[: o :
=7
fT

The martensite field is assumed to have either a plate- or needle-
form embryo so that the oblate or prolate spheroidal coordinates can -
be used, For merely analytical purposes, it is convenient to modify
the distribution of w at infinity so that the rigorous Helmholtz
equation is replaced by an approximation which admits the procedures
of separation of variables in spheroidal coordinates.

The analysis is still too much complicated to be recapitulated
in this restricted space. According as the embryo is a needle or
disc, normal or exaggerated, various configurations are obtained,
It is remarkable that a certain lower bound is assumed for the meaningful
range of linear dimension, It could be the lattice constant, This
also has been the case in our theoretical derivation of Tresca's

criterion,
The result of the analysis is plotted in term of the parameter
T=gh

where f# is the lower bound of the meaningful length, in Fig, 1
which may apparently explain the theoretical possibility of the
martensitic hysteresis,
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II, A HEURISTIC APPROACH TO THE PROBLEM OF FATIGUE

4. Dual Standpoi . .
Problem:n point and Dual Equations applicable to Fatigue Fracture

Fire fi’hls is based.on the recognition of the stress metric by which
Eing iMO;S Beltrami stress functions are defined (see [31] and [32])
8 dual to the strain metric, The corresponding dual dislocation

and dual compatibilit i i
o el [31?. 1ty are given much attention recently, as by

The stress tensor emerges as the Einstein tensor of the stress

Space as does the incompatibilit
y tensor as one of the strai
If they are denoted respectively by S

KA 7/ k\
]' and ]
and the strain ang stress tensors by

€k and e&x

The metric tensors are

a?\)( = S)\H + 26,\y’

and
Qe = G + 205,
Then either
_ /xxy def | /ien
V={(ewll )é—z—fl e dX
or

Vie(eh ™) iii‘TS[“eiwzx

Zgzrsf}e iimensions of energy, where dX =a/z‘c/2«20{1-3 in rectangular

betweégatﬁz.t These are part of the formulae for the mutual interaction
Wo spaces or two facets of the plasticit

the stress and. one to the strain, ? ¥ one TelEbsd to
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One can analytically amalgamate the two Riemannian spaces into
one without being concerned about its realization in ordinary space
because it is a non-BEuclidean concept., Thus we have the resultant

metric tensor
(¢ = (en] + (¢
and the resultant Einstein tensor

]@) _ ‘IKL—'L- ]/KK-J—YX)\)

X
where leis the interaction term, The resultant energy, owing to the
self- and mutual coupling, is given by

W (p4) = Lppux

The energy is subject apparently to the first and second thermo-
dynamical laws, which is either

SU S SW-sV >0 o SU%EE SW—sV >0

where
JUdgf E(V/‘*’ ) = (yU/de S(V.,, )

Evidently [/ or SL]/ takes over the rdle of the lost energy
and §Vy or 5\// is the increment of the free energy.

No energy is supplied in the case of static equilibrium so that
we have the variational criterion SLV:;Oor

S(U +V)=0 (9)

or

+V') =0 (9')
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Taking account of the small disturbance at the critical point,
we may preserve only the principal significant terms,

If the stress-functions and Pence the stresses remain unvaried,
the dual geometrical invariant €5« and ]Jk* are precluded from the

variation., This assumption corresponds to (9) and we have
1 1 A
—QI‘S!{*XSKUL{X -+ —ggl\/l S&Ma{X:O (10)
where k“and quk are appropriate functions of exx, E/Xx ]KA,
]’x‘ ete, Let this be called the first assumption,

If the strain and hence also Eye incompatibility remain unvaried,
the geometric invariant €,xand [ are precluded from the variation,
This assumption corresponds to (9') and we have

S sk ax + L M sel i =g (1)

29N ' /
where Kmand ]\fx are appropriate functions of C/M, e"l, ]-xﬁ [kA
etc, Let this be called the second assumption,

&

It is obvious that, in this rough approximation, the coefficients
k™, pq“‘, k/xx’ DQ’"A, ~may be replaced by their mean values
when only the mean characteristics over a considerable space in the
material is concerned about, As far as we handle the problem of small
deviation of strain and incompatibility from the Euclidean condition,
the terms in g™ etc. can be neglected so that we assume

A / def /v
k)‘ e @/”’—-21"5“5/ , 7 CeE 3,./,@/“
and
jF?xxea IIKX = stress tensor,

Dually for the problem of small deviation of stresses and stress
functions, we assume

v

Iy . XX\ 1 N def M
k= e™ — 15" e s, e
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and

x
l}Q&* = ] = incompatibility,

The variational criterion under the first assumption or approach
by the strain metric then leads to the equations of yielding treated
in the foregoing, Dually under the second assumption or approach by
the stress metric it needs to leads to the dual equations intuitively
assumed to hold by S, Minagawa [6], which are

L 33 (BY9aw) — 5 (1"qw) =0

(12)

ap (B/(v)l'bl 9‘2) w,) S [i(v)aiw/= 0

where 1w’ is dual to the W in the foregoing, and i , ] bk, =1,2,3

Let us call them the equations of dual yielding ((341,0351).

5. Baptizing Fatigue Fracture as Dual Yielding

The dual yielding needs to occur when the incompatibility amount
reaches a certain limit by any preliminary mechanical processes, The
limiting value is assigned by the structure of the equations (12) and
(13), the latter of which may change to some extent with the condition
of the boundary and the shape of the specimen, But such critical
mechanical phenomena as compatible with dual yielding are very few,
Perhaps, the fatigue fracture could be the sole one as was anticipated
by Minagawa,
ly so equipped or not,

The fatigue fracture can be regarded as achieved through two
consecutive processes; one is the growth ofa certain genesis of
fracture, and the other is its development into visible size,

The repeated stressing at the fatigue experiment seems to make
the growth of the genesis easier at each step, An atmosphere which
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carries this tendency to genesis mey be assumed gradually to be
pro@uced in the interior of the material of the specimen and to grow
untl} a limit is reached, If the limit is eventually the dual yielding,
the lncreasing atmosphere cannot mean but the growing incompatibility,
What is then the genesis?

At each cycle of load, something unobserved from the outside is
added so that the interior condition is altered without altering the
ternal appearance, There are two kinds of physical geometrical
objects that cannot directly be mechanically observed, One is the
SFress—function metric that does not yield an observable stress or
Rlemann—Christoffel curvature tensor, Another is the incompatibility.
Bgth are not directly observed from the outside but play dominant
roles in defining the criterion of dual yielding,

Lgt us try to substitute these significant Riemannian geometrical
terms in the tentative proposition:

) When a growing atmosphere reaches a certain amount a genesis
begins to develop into visible amount [6],

Evidently the atmosphere needs to have a critical value at which

a stability limit should be reached hence it must be set in corre-
spondence with the incompatibility which has a limit in the theory of
dugl yielding, - There remains then the stress-function as an unobserved
ObJe§t to be set in correspondence with the genesis, Its non-
Buclidean part is obviously included in the dual strain g}, . Therefore,
the unobserved genesis is represented by a scalar disturbance 1o

Or more general functions) corresponding dually to the disturbance
function 1 (or more general functions) in the theory of yvielding,

s That the unobserved change of the metric due to the intervention of
W does not necessarily mean an observable change of the stress is
dgally in correspondence with the possibility of an unobserved w,
e%ther yielding a Buler-Schouten curvature tensor without an observable
Rlemann—Christoffel curvature tensor, i,e, a stress or an incompatibility,

If the above correspondence is justified the fatigue fracture is
no.doubt a dual yielding, However, a straightforward objection could
arise such as follows: The equation of yielding which does not
involve any instationary terms depending on time, does not seem to
be answerable for fatigue which involves of necessity instationary
?hanges owing to the cyclic loading. The objection could be excluded
1f.oge does not fail to recognize the analytical structure of the
origin of the criteria of yielding and of dual yielding as a kind of
stability limit, The basic variational criterion came initially of
a set of non-homogeneous equations from which the homogeneous part
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has been extracted to account for the critical condition of yielding,
The non-homogeneous part so subtracted consisted of the energy-
momentum tensor summarizing the pre-existing distributions of
dislocations dual dislocations etc.

Similarly, there can be both stationary and instationary dual
energy-momentum tensor summarizing the disturbances of dual disloca-
tion etc. including repeated stresses and instationarily changing
moment-torque stresses,

However, it is question whether the mean incompatibility adopted
in the homogeneous dual equations is so remarkably dependent on time
as prohibite the use of the equations of stationary form,

The incompatibility being the atmosphere that grows with the
repeated stressing, a positive increment should accumulate at each
cycle, The periodically changing quantity, of which the accumulation
occurs, needs to take positive values more often and more dominantly
than it takes negative values Lef, Fig, 2 (a)], so that the resultant
accumulation by interaction increases almost monotonically (Fig. 2 (b)].

) Experimentally the fatigue characteristics are described in
reference to the number of cycles alone, the atmospheric incompatibili-
ty not remarkably depending on the minor difference of time or phase

in a cyclic step, So we can conclude that too detailed an instantane-
ous deviational feature of the atmospheric condjtion of the fatiguing
specimen need not be considered in using the dual equations of yielding,

The proposed equation of dual vielding can therefore be used to
analyze the fatigue limit without essential objections, The limit
can be calculated without being too much ooncerned about the external
instationary appearance,

6. Fatigue Analysis for Isotropic Disturbance

We shall show that the S-N curve (s standing for the stress
amplitude and N for the number of cyclic loadings) for fatigue
limits is obtained generally under some assumption from the foregoing,

Without much objection, the material may be assumed to be
plastically isotropic. Moreover, there being no orientation for the
incompatibility tensor, one may also assume it to be isotropic,

This assumption is due to Minagawa (6], In such a case the dual
field equation can be simplified to

Claaw - yaw) =0 (14)
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which has the same form as (8), where N is proportional to the
ircompatibility and C a constant [271,

Particular solutions of (14) can be obtained in the same manner
as studied elsewhere in regard to the yield criterion under hydro-
static pressure, Usually some disturbance might appear on the
surface of the Specimen, but it may not penetrate deep. The deeper
interior seems to be subject to another kind. Such is afforded by
a. analogy of the locally isotropic disturbance for yielding,

The assumption of local isotropy may also be brought over to
the dual yielding provided that the dominating disturbance therefor
is not affected by the presence of the boundary, which seems to be
the case,

Entirely in the dual manner to the analysis of yielding
under the assumption of local isotropy, we obtain

NJS =0 (15)

where S 1is the Riemannian curvature of the stress space whence
either

i) N=0 or ii) ST—O (16)

Contrary to the case of yielding, these criteria

i) and ii) are not altogether trivial in the case of dual vielding
or fatigue fracture, Taken together, they appear as the set of thick
lines, i) on the vertical axis and ii) on the horizontal axis of
coordinates, where the material needs to fracture (Fig, 3),

The abscissa N is proportional to the increasing incompatibility
or atmosphere or the number of cycles, The ordinate is the Riemannian
curvature which has the dimensions of stress, But the latter's
relation to the fluctuating stress impressed by the cyclic load is
not clear, The theory summarized in i) indicates only that

a certain isotropic stress field could be increased without limit if
the incompatibility is absent, The second condition ii) indicates
that the 1limit is imposed and reduced to zero load (amplitude of
cyclic stress) as _soon as the load is repeated any finite number of

cycles,

The practical situation could be a more gradual change from i)
to ii) such as indicated by the dotted line in Fig. 3 [cf. formula (16)1.

Such may happen if (15) does not rigorously hold so that the right-
hand side takes a finite value in place of zero. This is the primary
picture of fatigue assumed by Minagawa,
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The experimental relation between the S and N is illustrated
in Fig, 4, where a horizontal asymptote{%hifted to a distance from
the horizontal axis, The amount is called the endurance limit,

We need to explain the finite endurance limit. We have been
prepared for this by our summarizing various physical quantities into
the same class of material-energy tensor standing in the same place
as the stress tensor in the criterion for yielding or of dual yielding,
Therefore, the N and S in the formula (15) can be replaced by

N - N and S -5

respectively where § comes from the ordinary stress and ,S' from
the other stress equivalents; similarly for N and N', The formula
(15) is thus modified to

(N-N)[s -5 = 0, (16)

The dual pair N and S may be combined into one in the range
where the amalgamation of the dual spaces is most remarkable, Part
of -N' then has the character of varying S and part of -S' that
of varying N, Hence (16) can be refined into

M+ 7S -Mfs+sN -5 =0 (16")

for such a range where the coefficients N and M are appropriately
assumed and S, and N, can be constants in ordinary cases, For
extremal ranges where one of S and N does not vary, or grows
infinitely, it goes into

Nzl\/a (>\5 =O) (16”)
JS =5 =0, (#=0). (16')

As N varies, in general features, these branches connected into one
such as is represented in Fig, 5 where
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Ne
% =930

1s assumed. The significant branches are along PA, PB and BS,
Fracture cannot take place near N=0 except for a large extremely S
so that the branch PC is excluded, Similarly the branch CD, The
branches EF and P'B' are made insignificant by the precedence of
PB in the process of increasing N,

Copnecting these significant regions, we obtain finally the
lower limit of the region of rapture points which resembles the
empirical ones,

CONCLUSION

We have gone briefly over the basic features of the analysis of
th? extended fracture problems covering yielding, fatigue, martensite
trlggering and its hysteresis. Those other empirical features which
are not so explained may not yet be known to us in sufficiently a
consolidated form even experimentally,

It may be worthwhile to draw attention on this occasion to the
prevalent misunderstanding of the rdle of the methods of differential
geometry applied to these problems,

The geometry is one of the admissible languages, It is perhaps
the most convenient and powerful one as the means of natural philosophy,
?ut one language is seldom perfectly translated into another, Even
if, on applying tensorial geometry, our investigation might fall into
a trap which dislocation theory can circumvent, a new direction of
many an unexpected penetration can thereby be opened, As one of the
remarkable characteristics may be mentioned the fact that the result
of statistical observation finds often a most natural and appropriate
expression in the language of non-Euclidean differential geometry.

The statistical handling of polycrystalline material structures, in
connexion with the theory of micromechanics of imperfect continua,
needs to provide the valuable clue as a simplified model for the study
of higher order anomalies,

An extension of the foregoing will touch upon the problem of
what rdle will be played by the extended metric space, Here is
expected the possible future penetration to the higher microscopical
anomalies which dominates in the real world. Although the details
of them may not be noticed clearly as yet, one may cite some evident
cases known so far as follows,
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On the natural direction in extension of the Riemannian space
concept, we find those higher order spaces associated with the
celebrated names of Finsler [34] and Kawaguchi [35], [36]. They
originate when more non-local features of the anomaly units are
considered ([391,[401,(411), to cover not only the simply local, but
also the bi-, tri-, quadri-local cases etc, Such is along the line
of the recent non-local theory of elementary particles and can account
also for the non-local plasticity theory (e.g. [42]; see also [431).
Part of the endeavour by an apparently different school lies in a
certain sense along the dual line to this and is concerned with
essentially the extension of the concept of Cartan's area space [441],
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