ke
fi Un the Concepts of Dual Incompatibility and Dual Dislccation

in Relation to Fracture Problem

S.Amaril

ﬁég&ract The physical state of material including plastic defects

ias been clarified by non-Riemannian plasticity theory. It is known
$hat the strain defines the metric character of the plastic manifold
arsd the dislocation distribution defines the torsion character. Here

~ #4 construct the dual plastic manifold in such a manner that the

- atructural quantities of the dual space are defined by the physical

~ reactions resisting growth of the corresponding structural quantities

of the primal plastic manifold. This is proved to be the non-Riemannian
generalization of Schaefer-Minagawa's stress space, and its relation to
the strain space is clarified by using the concept of dual dislocation.

1. Introduction

This is part of the unifying study in establishing Riemannian and
non-Riemannian theory of plastic continua. The plastic state of material
uan be represented by either of the following two kinds of spaces. One
is the strain space of which metric tensor is defined with reference to

~ Lhe strain and the other is the stress space of which metric is defined

~ with reference to the stress-function tensor in Beltrami's sense. The
geometrical theory of continua started with imbedding the Riemannian
atrain space in multi-dimensional space [1], deriving the equation of
ylelding. Then the non-Riemannian structure was introduced to the strain
dpace to clarify the dislocational structure. The strain space has now
been extended to Finslerian space [2] in order to take ferromagnetic
structures into account, to four-dimensional one [3] in order to take
moving dislocations into account, and to more higher-order spaces [4].

, Recently the stress space has taken much attention. The equation
- of fatigue fracture has been derived by imbedding the Riemannian stress
8pace in multi-dimensional space [5] in entirely the dual manner as
that of the strain space. The non-Riemannian structure has also been
introduced to the stress space taking account of the torque stress [6],
(73, [8]. The existence of the torque stress has also been discussed
in relation to the dislocation field [91.

Here, we try to construct the non-Riemannian stress space in
entirely the dual manner as the construction of the non-Riemannian strain
space. We construct the stress space in such a manner that the structural
quantities of the stress space represent the physical reactions caused
by the existence of the corresponding quantities of the strain space.
This space can be proved to be a non-Riemannian generalization of Schaefer-
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i tion, the concepts
Minagawa's stress space [10], (11]. In.tbls connec , :
of dial dislocation and dual incompatibility are introduced and their
relations to primary quantities are investigated. Th§ geometry of non-
Riemannian stress space will clarify the mutual relations of the dual
quantities.

Let us start with the ordinary definition of the strain space.

. -Riemannian strain space [12]
? Noghzlmaterial manifoldphas been deformed by virtue of the plastic
defects existing in it. When all the plasti9 defects areirgmoved byed
tearing the material manifold, a small material vgctor dxt is deform
to (dx')l. There can be assumed the linear relation

(ax')d - dd = fygaxd. W

Here it is assumed that the deformations are small, and hence the
difference between the covariant and the contravariant characters of
indices are disregarded. Einstein's summation convention is assumed
throughout.

The plastic and elastic quantities of the ménifold is relat?d to the
deformation tensor (3 jj as follows. The symmetric part of pji is the
strain tensor

1 Ju 2
o3 = £(F31+F1)- @)
The rotation of it is the dislocation density tensor
i s
od g5 = -3€ 111kP13 (3

The incompatibility tensor is, as is well known, derived from the strain
tensor

gl - ikl ¢ Jm 2y oy Cnl. (#)

The dislocation density tensor and the incompatibility tensor are non-
divergent

2 3A35 =0, (5)
Fratd oo, (6)
i
They are connected by
The strain space is constiructed from these quantities. If we
define the metric tensor by
- (8)
g51 = O 33 - 2055,
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ard the parameters of connection by

rk%‘: _akﬁji’ (9)

#s have a distant parallelism strain space.
Apace represents the dislocation distribution

The torsion tensor of the

k13 = € ;i (10)

rd the curvature tensor due to the Levi-Civita parallelism represents
the incompatibility

Kiji1 = € 13n€xand™ (11)

The plastic structure of material is completely clarified by the space
structure. The correspondence between the physical quantities and the
geometrical quantities is shown in Table 1.

3+ Dual quantities

Next, let us define the dual physical quantities. By virtue of
the plastic defects, some energy is stored in the material. The stored
energy E may be expressed in three ways. One is in terms of the residual
strain tensor, another is in terms of the dislocation density tensor, and
the third is in terms of the incompatibility tensor. Let us assume that
an infinitesimal change of the plastic state takes place. Let us denote
the corresponding increments of the strain, dislocation density and
incompatibility tensors by ANess, Ao(ij, and AJ1j, respectively.
the corresponding increment A
_the following three ways,

Then
of the stored energy can be written in

AE = fqij Dejy dX, (12)
AE = [ginds ax, (13)
AE = [X 330N ax, (14)

The quantities g1J, o ij and X jj represent the physical reactions
eaused by the existence of €31, (13 and J1J, respectively. We call
these quantities dual quantilies. “As is well known, J1J is the stress
tensor. We call °(ij the dual dislocation tensor, and j(ji the dual
Ancompatibility tensor.

The dual quantities are mutually related as follows.

. On accoynt of
{#), we have, integrating (14) twice by parts,

AE = [( -€ iklé_jmnakam’)(nl)Aeji dX. (15)

Hence, we obtain

[=))
<
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gl =-eikleimy, o x,. (16)

This shows that the dual incompatibility is nothing but the stress-

function tensor. By virtue of the non-divergent character of Jij,;(ji

is determined only to within an additive term (1 #3)» where Py is
an arbitrary vector.

In a similar way, (13) is transformed to

AR = [(2e83,015a05 ax, (17)
where (7) is taken into account. Therefore, it follows that
o(ij = =2 €ik19k0(1j + 0 jy,i' (18)

where y/i is another arbitrary vector and the additive term originates

from the non-divergent character of o ij-
We call a pair of transformations
XK o s A w3 § Py,
o 1j *—}dij + an/i,
the guage transformation. The guage transformation has no physical
meaning so far as the macroscopic stress and strain are concerned,
However, some microscopic meaning may be endowed with them, as has
been pointed out in the geometrical theory of fatigue fracture [5].
If we restrict the dual quantities to satisfy
Qiji=0. (19)

which we call the Lorentz condition, these quantities are uniquely
determined. Moreover

235 =0 (21)

automatically holds.

Here let us investigate the relation between a primal quantity
and the dual. 1In the case of small disturbances, the stress is linearly

related to the strain by

where EiJkl is Young's modulus tensor. It is known that, when the
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dislocation field ij is given, the corresponding residual strain field
13 obtained by the cohvolution integral

°520%) = [agu(x - €)ol (5 ) ag. (23)

Tha coefficient tensor function ajilk(x.) has been obtained by many
investigators. Taking (13) into account, we can prove that the dual
dislocation is related to the primal dislocation as

LX) = (X )y (5) agl, (24)

 where rijkl is a material tensor function defined by

rtsmn(x) = f_Eijkl a,lkmn(g) ajits(x +%) dy. (25)

v'In a similar manner, we can prove that the stress function tensor is
related to the incompatibility tensor in the following form

X 51(%) ’/Sjikl()(-@ Jlk(5) ag. (26)

In contrast to the stress-strain relation, these are of non-loecal

¢haracter.

The force acting on a dislocation can easily be obtained by using
the dual dislocation. Let us consider a diilocation whose direction is
denoted by dJ and whose Burgers vector by bl. Then the force acting on

5‘ the dislocation is given by

- Hence using the dual quantities, the dynamical problems of plastic

¢ontinua can more easily be treated.

4. Non-Riemannian stress space

Generalizing the Riemannian stress space, we can construct the
non-Riemannian stress Space, by which structure the interrelations of
the dual quantities are shown. By this stress-space approach, the
structures of plastic continua will be investigated further.

Dually to the strain space. let us define the metric tensor 841 by

8ji = Sji - iji (28)
and the parameters of connection by
=i
M5 = =2k X1 (29)
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Then, it is easily proved that the torsion tensor gkji represents the
dual dislocation

— l s
Siit = 7€ kA1 (30)

and the curvature tensor due to the Levi-Civita parallelism gives the
stress tensor

qij = -eiklejmnakamxnl. (31)

Thus the interrelations of the dual quantities are geometrized.
This space has distant parallelism. Investigating the space structures,
we can clarify the dual quantities. The relation between the dual
geometrical and physical quantities are given in Table 2. Generalizing
the stress space to non-teleparallelism space, to Finslerian space, ete.,
we shall be able to fortify the theory of palstic continua. We give
finally the interrelations of the strain and stress spaces in Table 3.
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Table 1 Strain Space

0 metric 831 strain 54

1 torsion Syy4 dislocation O(ij

2 curvature Kjy4j incompatibility J1J

order of geometry physics
differentiation
Table 2 Stress Space
0 metric gy stress function X j3
1 torsion Skjii dual dislocation z-ij
2 curvature Ky sy stress aij
order of differentiation geometry physics

Table 3 Interrelation of the Strain and Stress Space

order of differentiation

strain space stress space

-2

-1

stress function

_,dual dislocation
7z

strain<Z

- stress
dislocation?

incompatibility”

-—————-- correspondence by space structure

correspondence by energy
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