A-27 ON DEFORMATION AND STRENGTH*#
C. C. Hsiad' and C. S, Ting'

The mechanical strength of a medium is formulated in terms
of microscopic behavior in the continuum. Both deformation and
orientation of the microscopic elements are considered in the
formulation. It is shown that under certain conditions the
representation of the complicated time-dependent macro-modulus
functions can be greatly simplified through the use of micro-
behavior, The time-dependent macroscopic fracture strength is
also obtained using microscopic considerations. The fracture
strength 1s found to be linearly related with logarithm of time
only for relatively large loads.

INTRODUCTION AND MATHEMATICAL MODEL

The macroscopic mechanical behavior of a material body is
complicated as it 1is intimately affected by deformation and
associated structural changes. Any investigation without
taking these microscopic structural considerations is unlikely
to give basic information or clear understanding. This is
particularly true for materials having pronounced time-dependent
properties. Viscoelastic behavior and ultimate strength are such
properties that cannot be accurately determined unless deforma-
tion is considered. The present report attempts to describe
methods of analyzing the macroscopic viscoelastic behavior and
the time-dependent mechanical strength of a medium as a conse-
quence of deformation and orientation of mlicroscopic elements in
the medium.

The mathematical model which will be used for analysis is a
matrix of oriented elements embedded in an arbitrary domain. The
whole system can be either suspension of individual elements or
a network of elements connected by flexible joints or both,
Depending upon the nature of the molecular constitutions, the
basic elements may be real or abstract molecular forces linear
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or nonlinear in their load deformation characteristics, In the
vicinity of a point, deformation and orientation of parallel
elements in the micro-continuum may be represented by motions of
linear vectors. For small deformations the complete matrix will
have little orientation effect., Considerations of deformations
of individual elements will yield representative information on
the macro-behavior of the system. However, when deformations
become appreciable, the orlentation of the micro-elements must be

taken into consideration if significant information 18 to be
obtained.

Referring to an arbltrary reference frame, the deformation
of any element can be easily expressed. Denoting the instanta-
neous direction of an element by a unit vector 84 then under
load the deformation of the elements can be expressed as
roemnsmsn where T, 1s the original length of the element and
Emn 1s the strain tensor. 1In general, the components of amn are
functions of time t and space varliables, For small deformations
there 1s only negligible amount of orientation and S8, can be
regarded as independent of time, When deformation becomes sig-
nificant, orientation of the elements must be considered. This
can be accomplished by introducing a density function of orienta-
tion p(e) in terms of large strain e. As mentiloned earlier,
depending upon the nature of molecular constitution two extreme
cases or their combinations may be considered. Using orthogonal
spherical coordinates (r,0,¢) consider the case for the deforma-
tion of a unit sphere with randomly oriented elements to a
Spheroid symmetrical about 1ts axls, the density of the probability
distribution function of orientation of the elements 1is

(1 +¢)° e

P(E) = P(O) [00329 + (l+e)331n29]‘?72_

where p(o) = f# 1s a constant representing random distribution
density function. However, 1f these elements are connected
together by flexible Jjoints, then2

[*3

p(e) = p(o) 5

[cos 2 g]Q 27

% + a sin
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where ¢ and € are related in the following form

8a, a + 1
€e=1+ —T?—__ﬁ‘n =

a” -1

These distribution functions are obtained for continuous
systems. For discrete systems, modifications can be easlly

(3)

1ntroduced.3 Therefore, 1t seems that for any kind of media the

general formulation should apply equally as well.

MACROSCOPIC AND MICROSCOPIC BEHAVIOR

In order to obtain macroscopic information incorporating
microscopic behavior, consider the stress tensor Uij in the
vicinity of a point where at least an element is attached, If
Ap 1s the number of elements per unit volume oriented in a
particular direction, f(6,¢,t) the fraction of unbroken ele-
ments, a function of orientation and time t, and F = yA
1s the force exerted on each element of cross-sectional area A
and length r, corresponding to a stress ¥ per element, then
thi traction force contribution by these elements can be found
as

F(9,¢)Krop(9,¢)f(9,¢,t)sisjdw

where dw 1s the solid angle, Since KroA = 1, therefore con-
sidering all the possible orientations, the stress tensor can
be expressed as follows

giJ =‘/ﬁwpfsisjdm
w

Now let us consider the one-dimensional constitutive
equation of the element. In general the stress is expressible
as a functional of deformation history subject to restrictions
imposed upon by principles of objectivity. Under suitable
conditions, for small finite deformations e, ¥ can be glven as

t t .t
] =\/1 1E(t-11)é(rl)d11 +~/“¢[‘ 2E(t-11, t—Tz)é(Tl)é(Tz)dTldTg
trtpt - . .
+‘Z;Z;/‘ 3E(t—11,t—72,t;—*rs)e("rl)e(Tg)a(Ts)dTld-rzd'r3
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where kernel functions, lE’ 2E, 3E depend upon the micro-
behavior of the element material, Supposing that the elements
are initially undisturbed, the stress components then can be
put in the form

t
Gij =kl; p(9,¢)f(t)sisj[£1lE(t—Tl)E;;§;§;T?IT dr,

-FJC U/ 2E(t—'rl,t—*rg) smnsmsn(TiT'quspsq(f;7'd11d72

t tt

+4[ JCJC 3E(t—rl,t-'r2,t-'r3)emnsmsn('rl) e_s s (1)

papq 2

EPSSPESIT3’ d'rld'rgd'r3 + ----o}dw

ciJ is also the macroscopic stress field for a homogeneous
material body as the average stress field is the same as that
at any poilnt., On the basis of somewhat comparable finite small
deformation considerations, the same stress tensor can also be

represented in terms of macroscople relaxation modulus functions

G etc, as follows

ijmn’
t .
cij(t) =u£‘ 1G1Jmn(t'T1)€mn(T1)dT1

tft

+ oJo 2G1jmnpq(t'Tl’t'Te)Emn(Tl)qu(T2)dT1dT2

£ttt
té;é.é 3Gijmnpqrs(t_711t‘72;t-Ts)Smn(Tl)qu(TE)-

EPS(TS)dTldTQdTS

For small strains, smsn will be indeépendent of molecular
orientation,and the linear macroscopic behavior can be related
to the microscopic behavior of elements in an oriented system
in the following manner:
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t t
Jé Gijmn(t—T)Emn(T)dT =\K; pfSiSJsmSn/; E(ﬁ—T)emn(T)dew (9)

For the convenience of illustration, if £ is considered to
be independent of time, then Gijmn(t) can be related to E(t)
indicating that a single function of a microscopic element
governs the macroscopic time-dependent behavior and the varia-
tion of the orientation of the elements, Differentiating (9)
with respect to time t, we obtain:

Gllll(t) =t£\pfslslslslde(t)

G1122(t) =L/ Pfsy8)s,8 dwE(t)
@

Gllss(t) =‘[Lpfslslssssde(t)

G2222(t) =\/ﬂpfsesesgs2de(t)
@

Gopgs(t) =prf3252s353de(t)

G3333(t) =L/‘pfssssssssdwE(t) (10)

Referring to a spherical coordinate System and letting the
direction of any representative element be designated by the
angles € and ¢ in the usual manner, then the Joint probability
distribution function is

® .0 T 0so8
L/ /‘ 57 81n6dfde¢ for
o'o 0=¢

IA
s

(11)

IA

2m

and s, = (sinecos¢,sinesin¢,cose). For the case p(e) 1s
represented 1in (1), we find

Grq7q(t) = §E§Ql£ {. - KQ 1- (1-K2)1/2€%-sin'lx}

G1100(t) =

O1155(t) = Gppgs(t) = RLQL {55{1 - (1-k?)1/2 %—Sin-lKJ
1

[=)'g

[3 - K2 - 3(1-k2)1/2 éSin_lK]E(t)
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G2002(t) = G111, (¢)
and

Gzzz(t) = p(O)f{j;b - kK2 - 3(1-k%)1/2 % sin_lK]}E(t)

(12)
where
K= 1 «(1+e)"3

It 1s seen that for this simple case a1l macro-relaxation func-
tions are bossessing the same functional form as the micro-relaxa-
tion function E(t). The advantage of using these relationships
in obtaining viscoelastic information for anisotropic bodies is
evident,

It should be pointed out that f is in general a time-
dependent function which can be evaluated from the statistical
theory of the absolute reaction ratel

&. K (7 - 1) - K r (13)

where Kr = wre—(U/RT + ) 1s the rate of reformation of broken
elements and Kb = wbe'(U/RT-Bw , the rate of rupturing of un-
broken elements, w, and @, are respectively frequencies of
motion associated with either reformation or breakage processes.
U is activation energy, R 1s a universal constant, T is absolute
temperature and B ang ¥ are positive constants. Once the
functional form of f 18 determined, the relaxation modulus
functions can then be properly modified. Furthermore, through
the correlation of the viscoelastic constitutive equations, it
may also be possible to deduce the creep functions of micro-
scoplc elements of the medium as well,

TIME-DEPENDENT MACRO- AND MICRO-STRENGTH

The time-dependent fracture of any medium can be studied by
solving (13), from which

t t
- t
1 f(K+ )dt J (K_+K_)dt

fzﬁeo er -/O\KPLO er dt+% (14)

According to the absolute reaction rate theory, the effect of

stress on elastic deformation and viscous flow 1is capable of
being related to a comprehensible activation process as a conse-
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quence of the movement of the whole or a segment of a molecule,

from one equilibrium state to the next, If U is the original
potential energy barrier to be crossed between two equilibrium
states, the frequency with which such steps occur under the
influence of the thermal agltation will be proportional to
e'U/RT After a stress ¥ is applied to the elements on the
system, the energy barrier becomes modified to U/RT-RY¥ in the
direction of the applied stress, to U/RT+y¥ in the opposite
sense where, as stated earlier, B and y are constants depending
upon the modification of the eénergy barrier., As a result both
the rates of modified kinetic process become different exponential
functions of stress. Since K = mbe-(U/RT—Bw and

K. = mre"(U/RT+yw) for a large value of stress ¥(t), K will be
very much smaller compared with Kb' To a first approximation,

(14) may be reduced to
t
-(U/RT-BY)
- e dt
f=81—_"_e~£mb (15)

It is generally recognized that the molecular orientation
processes will take place before the inception of fracture4.
Assuming that all the elements will be fully oriented before
fracture, then p = 1 and the stress function ¥(t) in each element

will be given as &
-U/RT[ [ _B¥(r)
e/ [ 4]

St

g(t

V/(t) =7ty = 870 e (16)

Furthermore, U is a material constant and ¥(t) may be considered
as a continuous and multi-differentiable function of time, we
may write, using (15) and (16) 3
-y/Rr[ [ M ' Ly 0)t%4. ... >
e U/RT | T PLY(0)49" (0)eiy" (0)72n ]
o

Y(t) = 80 e (17)

where tm 1s the time-to-fracture for a constant stress cm.

It seems quite reasonable, at this stage, to assume that
the fracture strength is associated with a limiting value wm
beyond which every element oriented in the direction of applied
stress will break. Then
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810 ; ! .
gt e R{[T PIHO 0)eigy (°)T2+"]dr} (18)

Again for simplicity by dropping higher order terms the first
two terms are taken in evaluating the integral, we obtain

8mo 1
ln—wgm + e'U/RT{éggé%%Y {e v (0)ty —1}} =0 (19)

From (17) it 1s easily seen that ¥(0)= 876(0)= Ope Substituting
in (19) and approximate the last terms, we have

8o 8
tn 58 s o VAT PO g, (20)
8mo
For relatively large values of Um, P8Tom »>zn-7FJE (20) can
be approximated to show a linear relation between™the fracture
Stress ﬁm'and logarithm tm,

o E%E (U/RT - #n a5 ). (21)

Fig. 1 shows Schematically the variation of the fracture
strength as g function of logarithm of time represented by (20),
This theoretical curve appears to fit very well with various
findingss. In addition, for relatively large applied stresses
(21) gives the approximate relationship which agrees fairly well
with availabile experimental dataS.
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