FRACTURE AT STRESS CONCENTRATIONS

B SMITH!

ABSTRACT

When a large structure is subject to a temperature lower
than the crack-arrest temperature of the particular steel from
which it is built, the problem of fracture initistion at stress
concentrations becomes of paramount importance, If a steel is
very brittle, then inclusions or small defects may act as the
cracks from which final frzcture is initiated; the present
work emphasizes the importance of the distribution of defects
on the behaviour of steel structures.

The theoretical analysis is based on a plastically relaxed
model for a slit and the criterion for fracture initiation is
the attainment of a critical local displacement. Previous results
concerning the interaction between relaxed slits are briefly
reviewed and some new results are described using a simple
procedure. The models are particularly suitable for representing
a locally bad region containing a distribution of defects
Quantitative estimates are given. and the work indicates that a
distribution of small defects can be as dangerous as a single
large one. even though the volume fraction may be smaller in the
first case. Thus one must consider the distribution as well as
the size of defects when assessing the risk of a failure.

1 Central Electricity Research Laboratories, Leatherhead,
Surrey, U.K.

133

s S R A

[ra e e


User
Rettangolo


1. INTRODUCTION

The most important characteristic of a brittle fracture of a
stc.eel structure is that a crack can Propagate and cause complete
failure of the structure, at a stress which is less than the design
or general yield stress If instead a crack were initiated in a

structurc‘e, the consequences. while very inconvenient, might not be

S0 alarming, as it might be possible to deal with such a crack.

Thus a crack must be prevented from propagating in a fast unstable
manner, and a way of doing this is to operate the structure at a
tezfxpera‘f:u:?e in excess of the "crack arrest temperature” of the stee1(1)
This critical temperature is one above which a crack cannot propagate
by a cleavage mechanism, and although it might still propagate by a
@uctile brocess, the minimm unstable length for this mode of fracture
is generally very large. Accordingly, a structure should be
reasonably safe from a brittle failure if its temperature is not
allowed to fall below its crack arrest temperature,

The standard method of measuring the

of a m.?.terial is to employ the Ro‘b:'tlgson t:::f%)m”t R e
exPlos:'Lon is used to start a crack in a thick plate of the material
which is subject to a tensile stress representative of the actual ,
Oper?.ting stress in service, The plate is subject to a f:emperature
gradient, and the temperature in that region of the plate where the
crack s‘E:ops is used as the crack arrest temperature, It is difficult
to imagine a severer test than this, but unfortunately it is very

If a large structure is operated at a temperature in excess of
the‘crack arrest temperature of the steel, it has a built-in
res:._stance to brittle fracture ; however, it is well known that the

crack arr.est temperatures, and in such circumstances prevention of
fracture initiation is of paramount importance. When failure occurs
Jjust below the crack arrest temperature it frequently starts at the
root 9f a notch of some description as a ductile fibrous fracture
changing over to cleavage as the fracture rrogresses. At lower
tgmperatures or if the steel is embrittled by, for example, hydrogen
pick-up or Strain-ageing effects, the fracture can start directly as
a cleavage fracture. In either case, except perhaps in some very

defect, or in the case of a particularly brittle steel or at very
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Following earlier work, the criterion for fracture initiation
at a notch %a assumed to be the attaimment of a critical displacement
at the root(3) In the lower temperature range, where unstable
cleavage fracture starts directly from plastic deformation, the
criterion will be both a necessary and a sufficient one for camplete
failure, and notch sharpness can be taken into account by assuming
that the critical displacement is the product of the notch root
diameter and a critical local strain. It is expected that this
relation holds down to the crit 031 notch sharpness at which a
microscopic size effect appears 4). In the higher temperature range,
where unstable cleavage fracture is preceded by stable ductile fracture,
this approach can still be used if we wish to be over-safe and do not
want even stable ductile fractures to form However, the condition for
complete failure must then be such that the critical displacement is
the total displacement at the notch root needed for unstable fracture

to occur.

Of course, in practice the critical displacement will be dependent
on the mode of fracture initiation, and hence for example on the degree
to which a plane strain situation is developed (In fact, when
fracture initiation is of the cleavage type, some wcrke:-s(sr6:7) have
assumed that the initiation is governed by the achievement of a critical
local tensile stress. However since local strain is required to
achieve this stress we persevere with the displacement criterion as
this allows a unified analysis to be conducted for the whole temperature
range. The validity of this simplifying assumption is being examined
in detail.)

If the critical displacement can be accommodated by short plastic
zones compared with the specimen width, then fracture can be initiated
at a stress below that required for general yield, but of course in
excess of that required for local yield at the notch. Thus, in order
to ascertain whether fracture occurs before or after general yield,
it is necessary to determine what length of plastic zone is needed to
accommodate a given plastic displacement at the notch root, and to find
the fracture stress it is necessary to know what gpplied stress gives
rise to a given local displacement,

In an earlier paper(3) a simple form of this problem was analyzed
by means of the theory of distributions of dislocations. The model
considered was that of an isolated plastically relaxed slit in an
infinite body subject to a uniform applied stress, and since an anti-
plane strain model was used, it represents a slit or notch in a semi-
infinite body. The solutions were in fact applied to the case of a notch
in a body of finite width, thus neglecting the stress-free nature of
the surface opposite the notch in the actual ph{ssi.cal situation. In
order to overcome this objection, a later paper\8) considered the
plastic relaxation at an infinite series of identical and equally-
spaced coplanar slits in an infinite body; as an anti-plane strain
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model was again used, the solution to this problem can be applied,
without objection. to the case of a notch at the surface of a body
of finite width,

The main purpose of the present paper is to consider some effects
of distributions of defects on the fracture characteristics of large
structures, The analysis shows that it is quite simple to consider
Iroblems involving distributions of slits when these are far apart,
and by extrapolation one can, in some cases, apply the results to
situations where the defects are cloge to each other; these physically
more interesting problems appear much more difficult to solve
analytically. The results for the isolated alit model are presented
in Section 2, as the remainder of the Paper is essentially based on
them, Section 3 discusses both the infinite se?ugnce of coplanar slits
and the infinite sequence of non-coplanar slits(9), However, to
represent a locally bad region containing a distribution of closely
spaced defects or inclusions, it is preferable to use a model involving
a finite mumber of slits, and with this situation in mind we consider
in Section 4 the spread of plasticity between two identical lanar
slits in the interior of an infinite body. Earlier work\10,11
considered the situation when plasticity just spreads between the slits,
but the present paper extends the work 80 as to deal with the situation
where plasticity has not spread between the slits thus giving a
comprehensive picture of the whole situation. The behaviour of two
non-coplanar slits is also considered, and the results are used in a
brief discussion of how inclusion or defect distribution affects the
behaviour of large steel structures.

A general feature that emerges from the work is that results for
anti-plane strain and plane strain conditions can be very different 3
the work thus emphasizes the need for exercising caution in using anti-
plane strain models (whose behaviour it is relatively simple to analyze)
as a substitute for the more frequent plane strain conditions which are
met with in practice.

2, THE TSOLATED SLIT SUBJECT TO A UNIFORM APPLIED STRESS

The anti-plane strain model of an isolated relaxed slit considered
by Bilby, Cottrell and Swinden, is shown in Figure 1, An infinite
isotropic elastic body (shear modulus G), subject to a uniform applied
shear stress p2s = o at infinity, contains a continuous distribution of
long straight screw dislocations lying parallel to the xs axis in the
¥1X3 plane. The resistance to motion is zero for the dislocations which
describe the freely slipping slit |x¢} < ¢y xq = O, whilst those
dislocations beyond Ixj’p= 9, x2 = O represent the plastically relaxed
regions at the end of the slit, and have a resistance to motion o9
which is representative of the shear yield stress of the steel under
consideration (04 > ¢). Considering the problem as one in the theory
of distributions of dislocations, and formulating the singular integral
equation which exprecses the requirement that the resultant shear stress
on any dislocation in the distribution is zero when the system is in
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equilibrium, Bilby, Cottrell and Swinden(s) showed that the extent
of spread of ppasticity a is given by

c/a = cos (10/20,) ceeeen RN €D

and that the relative displacement of the positive side ot.’ the plane
¥g = O with respect to the negative side at the slit tip is

3(c) = (404¢/7G) 1n sec (1!’0‘/201) simimian (3)

It is worth emphasizing that the above results are for an anti-
plane strain situation, described by a distribution of screw
dislocations, For the plane strain situation (described by a
distribution of edge dislocations with their Burgers vectors parallel
to the x2 axis) of a slit in a body subject to an applied .shear stress

12 = 0, the results are identical to those given by equations (1) and
2) except that the expression for #(c) is larger in the plane strain
case by a factor (1 - v), where v is Poisson's ratio,

3, INFINITE SEQUENCES OF IDENTICAL AND EQUATIY SPACED SLITS

3.1. The Infinite Series of Identical and Equally Spaced

Coplanar Slits

When ¢/0+ is small, the shear stress pz; at a point (x,,o,o)
along the plane x = O of an isolated slit and at a large distance
from it will be unaffected by the plastic relaxation and thg cogzponent
due to the slit itself will accordingly have a magnitude oc?/2x%, It
fol1omsl11) that for an infinite series of identical and equally spaced
coplanar slits, the effective applied shear stress on any one of them

will be

o+ 2% Z(—z:-;)—, - a<1 +’2’:;:> N )

n=1

if the distance between the slit centres is 2h where h > ¢ (Figgre 2)
Accordingly, the extent of ead of plasticity a in this case is given,
from the use of equations (1) and (3), by

2 2 2.2 (4)
c Ta zc IR EEE see
Z = 1 -"—!'&' <1 +12h )

and the relative displacement at a slit tip is

2_2 2 2
8(o) = e Lo <1 £ ’1'2§,> iganaps 15
G 80

using equations (2) and (3).
Expressions (4) and (5) are in agreement with the series expansions,
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for mmall c/h and o/o, derived from the following exact
expressions(8) obtained for all c/h, o/o,: )

sin (we/2n) . cos (m/20,) P ()

sin (we/2n)

8(o) o Housina 72 cos X o /5in(X + ¢)
o] | (1 - sin®a sin’x)Z h<sin(x -¢)
¢ e (7)

vhere @ = 7a/%h and ¢ = #(1 - 0/c1)/2. Expression (7) was not
evalg:t?g)analytically in the paper by Bilby, Cottrell, Smith and
Swinden\8), except for a = h, i,e. when the plasticity spreads
completely between the infinite sequegce of coplanar slits, However
the integration has been performodﬁzs using the Ferranti Mercury
computer. and the results agree with those obtained from equation (5).

] As with the model of an isolated slit, the results for an
infinite sequence of coplanar slits are six;lilar for both anti-plane
strain and plane strain situations, However, whereas the anti-plane
strain results can be applied directly to the case of a slit at the
surface of a body of finite width, those for the plane strain model
cannot be used in a similar manner,

3.2. The Infinite Series of Identical and E Spaced
Slits with Constant Distance of Vertical Separation

In 3.1, we examined the relaxation of stresses around anaxr
slits and emphasized that anti-plane and plane strain shearcm?géels
give essentially the same results. However, this is not the case
when the-slits are non-coplanar, for then anti-plane strain and plane
sf‘:ra.in‘ situations can give rise to vastly different results, Each
situation will be examined separately, the discussion, as in the
previous section, again being based on the isolated slit results,

3¢2.1, The Anti-Plane Strain Model

Consider the spread of plasticity from the inf

slits |x+| €0, x2 = *+ nh (nP= o, 1, g, ete, )” in mmugn:;g:&:ggy?f
subject to an externally applied shear stress P23 = 0p which causes
the body to deform in an anti-plane strain mode (Figure 3), As in
‘the previous work, the discontinuity of displacement along each of
the planes x2 = * nh can be represented by a continuous distribution
of long straight screw dislocations parallel to the X3 axis and
1ying in the planes x; = *+ nh, Plastic relaxation around the tips
of the alits is represented by screw dislocations coplanar with the
slits, the resistance to motion of these dislocations being, as
before, due to a friction stress 0, > gpand not zero as for the
dislocations which represent the slits. The effective applied shear

* Hereafter in the paper, these values of n will be assumed,
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stress pa2s from the slit along the Plane x2 = O acting on the slit
on the plane xaz = nh will be-0,c*/2n*h®, It follows that for the
infinite series, the effective applied shear stress on any one of them

will be
2. 2
T°c
"A <1 —sh‘ >

Accardingly, the extent of spread of plasticity aA in this case is
given, from the use of equations (1) and (8), by

o _,_ 19 (t- °> A

o 5k e w1 e B WA (8)

aA 8a% 3n?
and the relative displacement at a slit tip is
0. 7wt r?e?
QA(Q)= - _-é - > sesc00 (10)
G 8ot 3

using equations (2) and (8). These results are in agreement with
those obtained from fgsanding in series form the expressions derived
by a formal analysis\®/,

3+2.2, The Plane Strain Model

If the screw dislocations of the model in 3.2.1. are replaced by
edge dislocations with their Burgers vectors parallel to the x4 axis
and the external stress is altered to pya2 = op, the new model is that
of an infinite body containing an infinite sequence of relaxed slits
deforming under plane strain conditions (Figure 4)., In this case, the
effective applied shear stress pi2 on the slit at x2 = nh arising from
the crack along xa2 = O will be + ope’/2n®h®, Tt follows that for the
infinite series, the effective applied shear stress on any one of them

will be
2 2
mc
9% <1+ on? >

Accordingly, the extent of ead of plasticity apis given, from the
use of equations (1) and (13’[ by

(11)

2_2 2_2
2=4.1% <1+ il ) eeeee (12)
ap 8ot 3h

4
and the relative displacement at a slit tip is



E. Smith

tp(e) = (13)

4.0 w0} r?e?

1

+ evee

G 8ol ( 3h? )

using equations (2) and (1) Again, a more formal ion(®)
) . ai

of this problem gives the same results. scussion

3.2.3, Discussion of the Infinite Sequence of Non-Coplansr
S1it Results

The extent of spread of plasticit i
y for an infinite sequence of
gon-oople_mar relaxed slits, using the anti-plane strain model, is given
dz equation (9); for a given applied shear stress, the extent of spread
creases as the distance between the slits decreases, The opposite

:gg;lu:}:iog is :ﬁac{au;d for the plane strain model since equation (12)

8 that as the distance between the slits 4
R i e 4 ecreases, the extent of

) The difference between the two types of model

itselfr wher_x the results are applied tgpthe problem :%s?rm:s:: stress
concentrations, Thus, whereas %,(c) decreases as the cracks become
closer in the anti-plane strain model, #p(c) increases for the plane
strain model (see equations (10) and (13)).  Assuming that fracture

is initiated at a s]it ip when the relati
scme critical value.&ﬁs ive displacement there exceeds

section thus emphasizes the need for exerci caution in usi =
plam_a :'strain models, as a substitute far th:ixn‘néme f’req:uenl;:1 piﬁ :i:iin
conditions met with in practice, A similar conclusion is reached from
the xflodels for two non-coplanar slits which are discussed in the next
section, bui.:, as mentioned earlier, no such difference arises with
coplanar slit models where the results are essentially the same for
both anti-plane and plane strain situations.

4.  MODELS INVOIVING TWO SLITS

4,1, Dwo Coplanar Slits

When a steel is very brittle,or when the + ra i
then as indicated by Cottrell&?), the mticai‘“ﬁtcﬁ“ﬁ?z?blé?meﬂs
small tl'lat inclusions or very small defects may act as the cracks from
which final fracture is initiated, and the results of the infinite
However. to

;'.ocally bad region containing a distribution of small g:gze‘g::n:ra
:Lns:lusn.o‘m;s, it is preferable to use a model involv a finite mmber of
slits, _-‘hth this situation in mind, we consicleredﬁlg’11 the spread of
plasticity between two identical coplanar slits in the interior of an

spread between the slits However, in the i
3 ; . present section we shall also
discuss the situation where plasticity has not spread completely between
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the slits, and thus obtain a complete picture of the situation,

The details of the model (Figure 5) are identical in all respects
with those described for an infinite series of coplanar slits, except
of course for the mmber of slits involved, (As indicated earlier,
results for plane strain and anti-plane strain situations are
essentially the same when the slits are coplanar; we need thereforf 10.14
only consider the anti-plane strain case,) In the earlier analysis''Y»
we calculated the stress required for plasticity to just spread between
the two slits as a function of c/h, where 2c is the length of each slit
and 2h is the spacing between their centres (Figure 6); as the stress
is subsequently increased, the relative displacement will be greatest

at an inner tip, and its value as a function of c/h for different

values of 0/0 is given in Tigure 7. When the slits are far apart and
plasticity has not spread between them, the effective applied shear
stress pas on each of them will be

2
a(1+-—c— S abatn wiked SE s e are
: 4n?

~ Accordingly, from the use of equations (2) and (14), the relative
displacement at the inner slit tip will be

2_2 2
- A mel (4, ceeeeenns (45)
o = e e ( w) k%)

This result is also presented in Figure 7, thus completing the picture
of the effects that can arise from two coplanar slits,

If 3, is the aritical relative displacement that must be attained
at a slit tip for fracture to be initiated, it follows from equation (2)
that for a given applied stress o, the maximm length of isolated slit
that is permissible without fracture occurring is 2¢* where

7G@c
c® = Ca e ie "

B 4041n sec(mo/20,)

fowever, if there are two coplanar slits each of length 2c and whose
centres are a distance 2h apart with h + ¢ = c*, provided that o is
large enough for plasticity to spread between the slits and enable 31
to exceed &, then fracture can occur at the inner tip and the slits
will link up to form a single slit of total length 2¢*; this can then
propagate since the stress ¢ is sufficient to allow %, to be attained
at the new slit tips,

From equation (16) it follows directly that $1 = &, when

ﬂG@I <1 h \\ s /N (17)
= + - sec gt s - - iy
deo s c / % KZOv /
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This variation with ¢/h is shown for various values of 0/o, by the
dotted curves in Figure 7. For example, for o/oy = 2/3, if ¢/n > 0,7
th? presence of' the two slits will give rise to complete failure,
whilst if co/h < 0.7 the applied stress is insufficient to initiate
fracture at the inner tips and such a distribution of two slits will
not lead to complete failure,

The results of the analysis will now be applied to the problem
of fracture initiation at inclusions or small defects. If the defect
root diameter p is 0,010 in, and assuming that the critical displacement
%, can be expressed as %c = pépgp where ¢mr is the local fracture strain,
which we take to be 10, 8 becomes 0,0001 in, (it would have the same
value if p = 0,001 in, and €pg = 1%). Thus if the operating stress of
the structure is 20,/3, c* = 0.1 in, from equation (16) or the critical
inclusion size is 0,2 in, (G/o,~ 10%), However, two inclusions with
the same sharpness p near each other but of much smaller lengths, i.e.
0.08 in., can lead to fracture provided they are sufficiently close,
i,e. 0,04 in, Thus the theory has shown, in a quantitative manner, the
necessity of considering the distribution as well as the size of
inclusions when assessing the risk of a failure. Moreover, the work
indicates that a distribution of small inclusions can be as dangerous
;s atlarge one, even though the volume fraction may be smaller in the
irst case,

4.2, Two Non-Coplanar Slits

The behaviour of two identical slits placed above each other will
now be examined and both anti-plane and plane strain situations will be
considered in turn., The results for the infinite sequence of non-~
coplanar slits models suggest that there may be substantial differences
in the two cases. and this suggestion is confirmed.

4.2,1, The Anti-Plane Strain Model

Let the two slits be |xi| s ¢, x2 = * h/2, and the body is subject
to the applied shear stress Pas = 04 which causes plasticity to spread
from each slit along the planes xz = *+ h/2 (Figure 8)., The effective
applied shear stress p.s acting on each of them will be

o <1 o’
A 2h?
’ang; t'kble extent of plasticity ap will be given, using equations (1) and
s> DYy

(18)

e r2q? c?
_C_L_ = 1 - &g <1 - F) e0vscsecsae (19)
A 1

and the relative displacement at a slit tip is
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40,4c vaat c*
1 L(1-2) e G
A ¢ & h

by use of equations (2) and (18),
4,2,2. The Plane Strain Model

Let the body containing the slits |x:| 20, x2 = * h/2 be subject
to the applied shear stress pi2z = op so that it deforms under plane
strain conditions (Figure 9). Neglecting any effect due to yawing of
the slits, the effective applied shear stress pi2 acting on each of

them will be
2
[}
o (, . 2_h> G i+ s o ()

Thus the extent of spread of plasticity ap will be given, using
equations (1) and (21), by

2_2 2
c To c
—_ = 1 - P (4, ol (22)
ap &} h
and the relative displacement at a slit tip is
40,.c 7wd c?
3_(c) = 1 5CF (1 + =T ) ...... (23)
P G 801 h

by use of equations (2) and (23).
4.3, Discussion

The results for the non-coplanar two slit models confirm that, as
with the infinite sequence models for non-coplanar slits, there are
appreciable differences between the anti-plane and plane strain situations,
Thus, as before, the extent of spread of plasticity for a given applied
stress, and the probability of fracture initiation, are greater in the
plane strain case as the slits become closer, whereas they are less in
the anti-plane strain case.

Therefore, when applying the results of the analysis to the
problem of fracture at stress concentrations under the plane strain
conditions which are frequently met with in practice, one must in fact
use the relevant plane strain model. Regarding, as before, inclusions
or small defects as the slits from which final fracture is initiated,
equation (23) suggests that the critical size of defect can decrease by
about 10% when there is a distribution such that o/h = 0,25; an even
greater reduction is expected if the defect spacing is smaller,

Thus the work of this section clearly shows how distributions of
defects can be more dangerous than isolated ones when dealing with the
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safety of large structures, So far it has been assumed that the
steels are very brittle, thereby having low & values For more
ductile st?els with their increased 2 values? if oth;ar stress
concentrations are absent it is very likely that general yield will
always occur before fracture initiation. However, if a severe stress
concentration (e.g. a notch) is present and an inclusion (or
inclusions) is situated near its root, then it is possible that
fracture could be initiated first at the inclusion and then spread
backwards towards the notch root., This means that fracture will occur
at a lower applied stress than when the inclusion is sbsent; of
course, this effect can be described by a reduced & at the’base of
the large staf'ess concentration. Prevention of mdzcreductions is
compatible with the care taken in observation for inclusions at the
base of stress concentrations (e, g. key-ways),

S  GENFRAL, DISCUSSION

In the previous sections we have examined how frac i i
at a slit is affected by the presence of other slits, anhc;.r}ezaigi :;;:igg
the results to the problem of fracture arising from the presence of
inclusions or other similar defects. Particular attention has been
given to the situation when the slits are far apart, so that the
gpplied stress on each can be regarded as being esséntia]ly uniform;
it i§ then relatively simple to use the results for an isolated slii’:

;l:n similar mach can be used for the case of a small isolated slit
a finite sized body, whose surface is a large distance from the slit;

unpublished work). Of course, one particular example, that of a slit

attaimment of a critical relative di initiati
splacement far fracture initiation
and for the case vhen the applied stress ang the plastic zone size a.re’
both small, the results are in accordld,4,11) with the "fracture
mechanics” approach pioneered by Orowan(13) and IrWin?“’?,- where the
basis is to relate the change in strain ener%y with the work required
2)

for crack extension. For example, equation reduces to
2  Goq%
o =<_ __e> e, (28)
4 c
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solutions can be obtained for distributions of slits that are widely
spaced.

In principle y can be determined by measuring the fracture
strengths of specimens containing sharp notches of various depths,
provided that they break before general yield; one can then estimate
the maximum size of defect that can be tolerated in a given structure,
and this is the standard practice adopted when designing against brittle
fracture when using the "fracture mechanics" approach, However, this
mrocedure is only valid for high strength materials that have a low
value of y; for one finds that with the normal mild steels used in
engineering structures, gemeral yield and gross deformation always
precede fracture if typical laboratory size test specimens are used,
and it is not possible to reproduce the full weakening effect of a
deep notch in a large body, when fracture will occur before general
yield, The conventional fracture mechanics approach breaks down in
such a situation, and to predict the behaviour of large structures
from tests on small spec:ime(a‘.?',1 )one must then measure the value of the
critical local displacement and then find y from the relationship
Y = 018. (Such a concept of measuring a critical local displafem t,
or crack opening displacement, has also been suggested by Wells\15 )

A basic principle throughout this paper is that high relative
displacements, sufficient to initiate fracture, can be produced at the
roots of stress concentrations, The severity of the concentration and
the shape of the associated plastic region play a major role in this
respect 11,16) ana one way in which the defarmation can be concentrated
is by the presence of fatigue cracks. If a fatigue crack exists at the
root of a blunt notch then %, will be lowered because the ef“ective
gauge length over which the local fracture strain is measured will be
reduced; of course there may ultimately be a limit to the effective
sharpness of a crack, for as indicated in the Introduction, the
processes that caus$ 1S'racture initiation need a certain minimum volume
in which to operate\'/., Thus at low temperatures for a mild steel, when
fracture occurs before general yield, the fracture stress is markedly
decrei.sev} by the presence of a fatigue crack at the base of a machined
notch\17), " at higher temperatures, where fracture occurs after general
yield with typical laboratory size specimens, the detrimental effect of
a fatigue crack is reflected in a lower reduction in area as compared
with notched specimens without fatigue cracks; with much larger
structures that would normally break before general yield, this last
effect would be expected to be reflected by a lower fracture stress,
Thus since a fatigue crack can be more serious than a notch of the
severity usually accomplished by standard machining techniques, it
follows that it is necessary to sharpen a notch by fatigue cracking in
order to provide the most severe stress concentration; this procedure
is adopted by Irwin and his colleagues in the United States, Moreover,
there is a danger that when a structure is operated under conditions
where fatigue might initiate a crack, then the probability of it failing
in a brittle manner will increase,
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Figure 1, An isolated plastically relaxed slit in an infinite body
subject to an applied shear stress pas = 0. The plastic
relaxation is described by a distribution of screw
dislocations parallel to the x; axis ; the slit, which is
infinitely long in the xs direction, is of length 2¢ in
the x direction, and the extent of spread of plasticity
is a. P, positive screw dislocations; & negative
screw dislocations,
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Figure 2, An infinite series of identical and equally spaced
coplanar slits in an infinite body subject to an applied
shear stress p2s = 0., The slits are infinitely long in
the x3 direction, are of length 2¢ in the x, direction,
and have their centres a distance 2h apart. saaswindicates
plastically relaxed regions which extend to a distance a
from each slit centre.
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Figure 5. Two identical coplanar slits in an infinite body subject to
an applied shear stress pzs = 0. The slits are infinitely
long in the x3 direction are of length 2¢ in the x
direction, and have their centres a distance 2h apart.
A~~~~~~ indicates plastically relaxed regions.

Py3= 0y AT oo

Figure 3, An infinite series of identical and equally spaced non-
coplanar slits in an infinite body subject to an applied
shear stress pzs = oA (anti-plane strain deformation),

The slits are infinitely long in the x3; direction, are of
length 2c in the x4 direction, and have their centres a
distance h apart. ~w~indicates plastically relaxed
regions which extend to a distance a A from each slit centre,
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Figure 4, An infinite series of identical and equally spaced non-
coplanar slits in an infinite body subject to an applied
shear stress p12 = op (plane strain deformation). The
slits are infinitely long in the xs direction, are of
length 2¢ in the x4 direction, and have their centres a
distance h apart. A~~~ indicates plastically relaxed
regions which extend to a distance @qpfrom each slit centre.

Figure 6, The stresses (indicated by x) required for plasticity to
Jjust spread between two slits for different values of c/h.
2c = slit length, 2h = distance between slit centres,

0 = applied shear stress and 04 = shear yield stress.
The results are compared with the corresponding ones
obtained from the infinite array theory (----------—-= ).
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Figure 7,

Figure 8.
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The displacement 81 at an inner tip of a slit (for the
two coplanar slits model) for different values of the
applied stress o (full curves), The dashed curves

illustrate equation (17). o4 = shear yield stress,
2¢c = slit length. 2h = distance between slit centres and
G = shear modulus,
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Figure 9.

Py3= 0y AT oo
Two identical non-coplanar slits in an infinite body
subject to an applied shear stress DPa3 = 0p (anti-plane
strain deformation), The slits are infinitely long in
the x3 direction are of length 2¢ in the x, direction,
and have their centres a distance h apart. ~~vvw indicates
plastically relaxed regions which extend to a distance ap
from each slit centre,
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Pia= 0p AT

Two identical non-coplanar slits in an infinite body
subject to an applied shear stress P12 = 0p (plane strain
deformation), The slits are infinitely long in the xj
direction, are of length 2¢c in the x, direction, and have
their centres a distance h apart, a~aav indicates

plastically relaxed regions which extend to a distance ap
from each slit centre,
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