A-22 FLEXURAL PROBLEMS OF CRACKS IN MIXED MEDIAl

G. C. Sih
Abstract

The paper constitutes an extension of the Hilbert boundary
problem, originally developed by Muskhelishvili for solving plane
problems with cuts or cracks, to the transverse flexure of thin plates
of dissimilar (or similar) materials bonded along straightline segments.
The unbonded portion of the interface may be regarded as crack-like
imperfections. Using the properties of Plemelj formulae and Cauchy
integrals, sectionally holomorphic functions are developed for one or
more cracks distributed along the dividing line of two dissimilar
materials under flexure.

The flexural stress in the vicinity of a crack between two
different materials is found to be of an oscillating character with
singularity of the order of r71/2, being the radial distance from
the crack point. This indicates that interpenetration of certain parts of
the crack boundary may take place, a physically impossible condition.
Crack systems of interest such as concentrated couples applied to the
surfaces of a finite crack and an infinite series of collinear line cracks
in joined materials are also examined in detail. Presumably, the
current fracture mechanics theories of cracks in 2 homogeneous material
may be extended to the prediction of remaining strength of bonded
dissimilar materials with cracks along the interface.
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Introduction

Many important problems of the theory of elasticity may be
solved by reduction to the problem of linear relationship or Hilbert
problem in complex function theory. In particular, when the region
under consideration is the half-plane or the plane with cuts or cracks
along one and the same straight line, the §Iilbert formulation is an
expedient as shown by Muskhelishvili [1]° for solving extensional
problems. The object of the present paper is to extend such a form-
ulation to flexural problems of thin plates made of two dissimilar mat-
erials with lines of discontinuities along the common bond line.

Plane problems of fault lines at the interface of two different
materials have been considered by several authors. Using the eigen-
function-expansion technique, Williams [ 2] has investigated the problem
of a semi-infinite crack between two joined half-planes. He discovered
that the stresses in the imme diate vicinity of the crack tip are infinitely
large in magnitude and change the sign an infinite number of times. This
oscillateory phenomenon was discussed at length by Salganik [ 3] based
on the results of Cherepanov [4] who has formulated the problem of two
half-planes bonded to each other along a finite number of straight-line
segments by means of the problem of linear relationship. Salganik has
further showed that the opposite sides of the crack may interfere in a
region close to the crack tip. In other words, the crack surfaces may
wrinkle and overlap, which is physically inadmissable. The same
conclusion was obtained by England [5]. Recently, Rice and Sih [6]
have combined the method of eigenfunction-expansion with complex
function theory to solve a number of extensional problems of cracks in
dissimilar media and found that in bi-material problems the stresses
and rotations at infinity cannot be specified independently.

In another paper, Sih and Rice [7] have also considered
briefly the flexure of a bi-material plate containing a semi-infinite
crack. With the aid of eigenfunction expansions, the flexural stresses
were found to oscillate rapidly near the crack tip, a phenomenon
similar to that observed in plane problems of cracks. Results were
expressed in terms of Goursat functions [1] » but were not determined
for specific loadings and crack geometries. In this paper, the non-
homogeneous plate is assumed to have a finite or infinite number of
collinear cracks placed along a straight line between two dissimilar
(similar) materials. Boundary problems are formulated in terms of
sectionally holomorphic functions following the problem of linear relation-
ship. The method of solution involves Plemlj formulae and Cauchyintegrals.

Considered in detail is the first fundamental problem of flexure
of bi-material plates with cracks. Solution is obtained in general form
such that it includes many special cases of fundamental interest. First,
a solution is found explicitly for the problem of a single line crack in an
infinite plate of dissimilar materials with uniform bending moments at
infinity, The same configuration with concentrated couples applied to
the crack surfaces is also examined. In order to study the interaction
of cracks between two bonded materials, the case of a periodic array of
collinear cracks is solved in closed form. In all of the aforementioned

Numbers in brackets refer to References at end of paper.
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examples, wrinkling and overlapping of the crack surfaces occur in the
displacements near the ends of the cracks. Such a physical impossibility,
however, occurs only in those places near which the solution cannot be
described satisfactorily by the linear theory of elasticity. The results

of the present investigation are of interest in connection with the pro-
pagation of cracks associated with welded or bonded dissimilar materials
under flexural loads.

Governing Equations of the Flexural Problem with Cracks

Let =z =x+1iy be the complex variable of any point of the
mid-surface of the plate made of two dissimilar elastic half-planes
with lines of discontinuities along the bond. The upper half-plane S
is occupied by a material with elastic constants E, and v;, andthe
lower half-plane S~ by a material with elastic constants E, and v,.
In the sequel, all quantities associated with region S' will carry the
subscript 1, and all those pertaining to region S~ will be attached
with subscript 2.

Both Lekhnitsky [8] and Savin [9] have applied the complex
variable method of Muskhelishvili [1] to solve flexural problems of thin
plates with holes using the Poisson-Kirchhoff theory. For isotropic
plates of one material, their formulation requires the determination of
two complex functions ¢''(z) and '(z) of the complex variable
z =x + iy. Denoting

o(z) = p'z) , Uz) =y'(z)

the complete solution to a bimaterial problem may be expressed in
terms of four complex functions &:(z), T:(z), j=L,2. For crack problems,
it is advantageous to further introduce the function [l]

QJ-(Z) =6J.(Z) + ZEB(ZH‘ \IIJ.(z) - j =12

Therefore, the bending, twisting moments, and shear forces at any
point of the plate may be computed from the functions & (z), Q.(z) as
follows: J J

(Mx)j + (My)j = -4.DJ.(1+vJ.)Re[ q>j(z)] (1)
(My)j- (MX)J. + Zi(ny)j = ZDj(l-vj) [Qj(z) - ‘Dj(z) = (z—Z)é'j(Z)] (2)
(QX)j = i(Qy)j = -4Dj <I>'j(z) (3)
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Similar]:y, it is convenient to express the out-of-plane deflection w.
and t%)e in-plane displacements Uj, Vj interms of two analytic J
functions ®(z), w(z) of the complex variable z=x+iy

w;= Re U ZSj(z) dz + S‘(i)j(z) dz - (z-2) §¢j’(z)dz] (4)

it ives -6 ‘:uj(;)-i‘ ¢5(2) + (2-2) ij(_z—)] (5)
where § is the thickness coordinate and

Qj(Z) =w'j(Z). j=L2

The flexural rigidity of the plate is denoted by Dj= Ejhf}/iZ(l-v;) with
Ej’ vj and hj' being the Young's modulus, Poisson's ratio, and the
thickness of the plate, respectively,

It should be remarked that the representation of the moments,
shear forces and displacements by means of the functions ¢j(z), mj(z)

and ¢>j(Z). ﬂj( z) is valid only for the plane with lines of discontinuities
along segments of the real axis. Upon assuming thatt

Lim

|
y—o YEltHy) =0, j=1,2

and t do not coincide with the singular points of the lines of discontinuities

or cracks, the last terms in egs.(2) and (5) vanish as z approaches 7z,
Hencg, by placing the cracks along the real axis, the rather special repres-
entation given by egs. (1) to (5) simplifies the boundary conditions of the
flexural problem considerably.

Within the frame work of small-deflection theory of thin elastic
plate.s{ the boundary conditions on the crack surfaces and the continuity
conditions along the bond lines will be satisfied only in the sense of Kirch-
hoff. That is the three conditions prescribing (My)j' (ny)j and (Qy)j

can be replaced by two conditions as
t

m.(t)=M.,f.t=S‘ At +(H )., j=1, 6

. ( y)J <5l ] (Qy)J ( xy)J j 2 (6)

where mj(t:) and £J.(1:) are the bending and equivalent twisting moments

4 .
Throughout this baper, z assumes the value of t onthe real axis.
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per unit length of the plate boundary, respectively. In general, m.
and fj are expressible in terms of the functions §j(z) and Q;(z):

mj+ ifj = Dj(l—vj)[ﬂj(z)- p.jéj(z)+(z—z)§j(z):' (7)
where
3+Vj )
4TIy I Ehe (8)

In addition, since the functions ¢(z), (z) ineq.(5) may be multivalued,

the flexural problem of cracks will be formulated in terms of uj,vj, i€y

the partial derivatives 8u,/dx,0v./0x. Differentiating eq.(5) with
respect to x gives J J

w +iv, = -a[nj(z) +2,(2) 4 (z-E)ij(E)J (9)

Thus, the required solution of the flexural plate problem under
consideration lies in the determination of the sectionally holomorphic
functions &.(z), Qj(z) » J =42 as defined by Muskhelishvili [1]. For

large |z|, these functions take the forms [9]

*k *k
| MokM .
Bzl =Tty —ap— 7 + 0z (10)
J £ 3
% 1 MpHMY 1
QJ(Z) . r:] + Fj +Z—7Ti 4DJ' 2 + 0(72) (11)

* *
where Mx+iM is the resultant vector of the moments applied to the

*
crack surfaces and I‘J., I‘j are related to (M::o)j 5 (M;D)J., the
bending moments at infinity, i.e.,

@
(M), + (M), «  (MD)-(MD),
= - . A B o gt 0D (12)
Jj 2IDlehin ’ Jj ZDJ.iI—ij

Without affecting the general formulation of the problem, the twisting

moment (ny)j at infinity is taken to be zero in this paper.

Hilbert Formulationif Flexural Problems Bf Cracks _iEMixed Media

The mixed medium consists of two plates of dissimilar
materials bonded along straight-line segments L{i=1,2...,n) of the

. . . * *
real axis; the union of these segments is L = L’l; + L, +... + Ij:l.
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The remaining part of the real axis represents n number of cracks

Lj:ajbj(j=l,2, .+.,n) such that their union is L and the ends are
encountered in the order a;b;,a,b,,... anbn' Thus, I*UL is the

entire x-axis.,

If the subscripts + and - refer to the values of the
functions on L approached from the regions S’ and S, respect-
ively, then the boundary conditions of the first fundamental problem may
be written as

mj +if] =-D,(1-v,)pT(t), on L
(13)
m, +1if, =-D,(l-v,)p (t), on L
Continuity of moments and displacements across I_: requires that
. *
m; +if; =m, +if,, on L
(14)
1 1 ' ! ES
u, +iv; =u, +ivwy , on L
Making use of eqs.(7) and (9), egs.(13) and (14) become
+ - +
m12(t) - Q,(t)=p(t), on L
(15)
- + =
b2 82(t) - Qz(t) =p (t), on L
and
*
®,(t) + Q,(t) = 8,(t) + Q,(t), on Lk
(16)
Y [M@l(t) - Ql(t):l = 128, (t) - Q,(t), on L’
in which y stands for
- Dy(1-vy)
Y= Bullw) (17)

By means of analytic continuation, it can be shown from egs. (16) that
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the relationships
YU 1+ 1 1+y

2z} = - ()8 (2) + (=2) 2, ()
1+;_11 Y+U-2 ¥ (18)
Qplz) = =y (g7)8,(=2) + ( 1) 2,02

will hold in the region S+US_ excluding the lines of discontinuities L.
Therefore, once ¢.(z), j=1,2 are known, 0.(z), j=1,2, follows from
egs. (18). Solving']for éj(z) in egs. (15) and {16), there results

i+l + yu 1 - -1 + -
— - - —— - — J—— -
[Y(sz )2, (t) 8, (t)] - [v( Vi, )3, (t)-8,(t)] (Y+u2 Myp -p ), (19)
and
tod, vyt -
[(1+u1)Ql(t)-(l+u2)§2(t)] +ﬁ( Y_I_HZ)[(1+u1)él(t)-(lﬂiz)éz(t)]
= ey Ly (T e T (L0 (20)
Uy y+u2 2 1 1 2
Applying the Plemelj formula to eq. (19) yields
YH Tl _ o s 1 o(t)dt i tl
Vi )2 ) = (—J—sz)z—ﬂf YT, (21)

L

Eq. (20) is in the form of the nonhomogeneous Hilbert equation whose so-
lution is given by Muskhelishvili [17]:

: _ + P (z)
(T4 (2)-(L4u,)8 (=) = ZT:i)(Y(Ejf = (tt_)i(t)dH < (22)
L

From eqgs. (18), (21), and (22), the general solution to the flexural prob-
lem of cracks in mixed media is
=(14u,)F,(z) + (Ytu,)F,(z)

b (T Ty (Thy)

(14U F,(2) + ylyu +1)F ,(2)
u2(1+ul)+YU1(l+u2)—v
u1(1+u2)F3(z)+uZ(yul+l)F4(z)
b (g My (T4y,))
_u,2(1+;_11)F3(z)+yu1(y+p2)}?4(z)

Mo (Tu g v (T4

2,(z) =
(23)

,(z) =

and

Ql(z) = -
(24)

QZ(Z) == e

The two unknown functions Fj(z) » J= 3,4, in eqgs. (23) and (24) are
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+u +1
Fi(z) =L [ gl Y W
2mi

t-z I-y v ytu )PI~F2 1 (25)
7 2
Fo(z) =1 r X+(t)f(t)dt s L P (z) 6
4 27iX(z) J t-z I-y X(z) (26)
L
It will be assume d that the functions
(t (v -pT), () (T o o (L Jp
g = - - 5 t) =
) YP -p “1(Y+“2) t22)

satisfy the Hdlder condition on L . Moreover, the Plemelj function

n 1 . 1,.
X(z) = I (z - a,)27 (5 - p,)2*ix (28)
=1 J J
J
is sin.gle-valued in the bi-material plane, cut along L, and the branch of
X(z) is taken such that
Lim z ™ X(z) = 1
Z-

The bi-material c onstant

(29)

agrees with eq. (12) in [7]. In view of eq. (28), P (z) must be a poly-
nomial of degree not greater than n : &

n n-1
Pn(z)=Aoz +A z et A (30)

) .The Problem is basically reduced to the determination of the (nt+1)
Coeff}clg:nts_ in eq. (30). The coefficient A may be obtained immediately
by eliminating F3(oo) in egs. (23) or egs. 824), which give

Ao = (1+_ul)1"1 - (1+L12)T2

or o1
—_ l' R %
AO = —_LYUI‘UZ [uZ(HuI)(TIH'])—u1(1+u2)(1‘2+1*2) ]

At first sight, there seems to be an inconsistency in the value of A . A
closer examination of egs. (23) or (24) reveals that the bending morfent

in the x-direction at infinity suffers a discontinuity across the bond line, i. e. ,

Ty, 1y (=¥ 03 =y o, s, T+ 20y - )
(M®) =1 1 2. .0 1TH/TH M, 17H27
x )2 \{( l+u2)( l-p,l ( x 1+ y(1~u1)(1+u2) MY 32)
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Eq. (32) may be derived either by equating F4(oo) in \fj(co) or in Qj(a)) s

J=1,2. By virtue of this equation, it can be shown that the two expres-

sions of A, in egs. (31) are indeed equivalent. The remaining coefficients
A AZ’ - An must be found from the condition of single-valuedness of

Aps
the displacements.

Hitherto, the functions Qj(z) s Qj(z) were derived on the basis that

the derivatives of displacements are continuous across L’F, egs. (14).

Therefore, the displacements u.,v., calculated from @J.(z) , Qj(z), are

determined up to some arbitrary constants, say c., which may be differ-
ent on different cracks, Lj = ajbj . This means tHat

+ c - . -

ul(t) + Wl(t) = uZ(t) + 1v2(t) + c; » on Lj (33)

However, the physical problem requires u .+iv. to have definite limits as
z approaches any one of the ends aj, bj: b

+ N . -

ul(aj) + 1v1(aj) = uz(aj) + 1v2(aj)

+ .+ - - (4]
ul(bj) + lvl(bj) = uZ(bj) + 1v2(bj)

These conditions may be satisfied if

Cl=cz=...cn=0

Furthermore, eqs. (34) may be subtracted and arranged in the form
+ .+ + .+ o . - - .

[ul(aj)ﬂvl(aj)] - [ul(bj)ﬂv](bj)l = [uz(aj)ﬂvz(aj)] [uz(bj)ﬂvz(bj)]

Since u1,+ivj are point functions, an equivalent statement of the above

equation is

b, b.
J J
in'” it st Fr 1 et
] [u] (t) + ivy (t)]dt = J (u} (t)+1VZ (t)]dt (35)
a. a,
J J
Using eq. (9), eq. (35) becomes
b. b.
J j
ret " = fe at)1a 36
JUaiw+aiela = a5 + afwar (36)
= 4 a.
J J
Eq. (36) may be further simplified if egs. (23) and (24) are employed with
+

the knowledge that F3(t) = F;(t) = F3(t) - Hence, the single-valuedness
of uj+ivj renders i

J
J [FZ(t) - F;(t)]dt =0, j=1,2,...,n (37)

a.
J
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This is a system of n linear equations in the n unknowns AI’AZ’ cee

* 3
Note from eqs. (25), (26), and (27) that in the case I', =T. = 0 and p+ =
P =0, the system, egs. (37), can have no other soléltion] except A =
A1 S e = An = 0, which represents the trivial solution éj(z) = Qj(g) = 0.
Therefore, eqgs. (37) always have a unique solution as discussed by
Muskhelishvili [1] for cracks under Plane extension.

If the solution is to be entirely non-dislocational, the out-of-plane
deflection w, , j=1,2, of the bi-material plate must also be one-valued.
Following thd arguments used before and applying eq. (4), it is found that

b.

] j
r —+ + r —- -
J Re[w1 (t) + ¢, (t)]dt = J Re[ w, (t) + é,(t)]dt , j=1,2,...,n (38)
a. a,
J J
While eqs. (38) offer no additional information, they must be satisfied for
non-dislocational problems of cracks subjected to flexural loads.
In order to describe the details of the method, specific examples
will be considered in the sections to follow.

Cracked Plate of Dissimilar Materials Subjected to Uniform Moments

Suppose a bi-material plate with a single line crack on y=0,
o0 2
MY in accordance with eq. (32). The edges of the crack are free from

external loads so that g(t) = f(t) = 0. For a single crack, n=1, eqs.
(28) and (30) reduce to

lx, < a is stressed at infinity by bending moments (M::D)l , (M;O) and

X(z) = (ZZ_aZ)%( z-a )m

zFa’! » Pilz) = A ztA, (39)
where
_ (1-y)(1+y;) @
o’ 4D, y

The functions FJ.(Z) » J=3,4, are given by

Fy(2) = 125 Dylmy+10) - (v, IT, ]
1 AjztA (40)
F (z) = — 2
4 I-y " X(z)

The only unknown A, in eqs. (40) can be obtained from eq. (37). It should
be emphasized that - the Plemelj function X(z) may have different limits

depending upon whether z is approached from the region ST or S~ . The
two limiting expressions are related to each other by
- Ha WHgtlo
X (t) = - = )X (t) (41)
( M1 Y+U~2 (
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With the help of eqs. (40) and (41), eq. (37) becomes
a .
+
r (t+a. )W‘ Aot Al
] ‘t-a 2.2
te-a
“a V
On replacing the line integral, eq. (42), by a contour integral, the result
of integration requires

dt = 0 (42)

= = 2i 43
A1 = 21a1(Ao (43)

The obtained results may now be used to show that eq. (38) is satisfied.

Once the functions F.(z), j = 3,4, are known, the flexural stres-
ses in the plate may be comﬂuted from

126 _ 126 _ 128 _
O =3 M) O) = M) L )= - SR,

44
3(h2-452) 3(hj2-462) g (44)
el =—lg— @, ), %)
;

by way of egs. (1), (2), (3), (23), and (24). Likewise, the deflections
and displacements can be obtained in a straightforward manner.

Concentrated Couples on Crack Surfaces in Bonded Plates

Consider two dissimilar elastic plates bonded together along the
x-axis except over the line crack, -a < x < a, which is opened by equal
and opposite concentrated couples M applied to the crack surfaces at

¥ =b" di oments at infinity are
x=b and x=b , where b<a. The ben ing m
assumed to vanish. Thus, egs.(12) and (31) imply AO = 0. On the sur-
face of the crack,

- % =
m-ll- =m, = M6(t-b) , fl = f2 = 0, onL (45)

where &(t) is the Dirac delta function. Putting eqs. (45) into (13) and the
subsequent result in eqgs. (27) gives
o (g Hyug (145)

Mb(t-b) (46)
uy lyfu,)

D,(I-v,;)

g(t)=0 E) f(t)="[
Since Tl = FZ =0, eqgs. (25) and (26) may be simplified:

-
g1 (47)

3
1 [ X7 (t)f(t)dt 1
1-y X(z)

Fuo) = ooz | T2
-a

Fi(z)=0,

Substituting eq. (46) into (47) and integrating, F4(z) becomes
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1+ 1
M [“z( wpbve () we) 1 , 1 Ay .8
ZniD, (3Fv,) - U (vFp) X@ 75 Ty X ¢

Fy(z) =

The structure of X(z) for a single line crack is given by eqgs. (39).
There remains the evaluation of A1 . Making use of egs. (41) and (48),
eq. (37) takes the form

a ;
y t+a‘)”{ M [“z( Py v ) xe) 21y ae
J_at-a 2niD, (3+v,]) uytvtu,) ‘tb  T-y =
t -a
(49)
whose solution demands A, = 0. For this problem, the single-valuedness

of Wi j=1,2, governed by eq. (38), is also satisfied. The complete
solution may now be expressed by & (z), QJ.(Z) as follows:
M X(b) 1

2,(2) = ZniD,(3+v,) X(z) z-b
2 ) S YD) xip) 1
2 ZleT3+\;1) v, X(z) z-b
and (50)
TR VPRI Sl 1) 5
1 2111D1(§+\)1) Y, X(z) z-b

=M X(b) 1
Q,(z) = 2niD1(3+v17[Y“1]xzz) 75

In passing, it is worthwhile noting that solutions to flexural prob-
lems with arbitrary bending moments mi(t) applied to the crack sur-
faces may be generated from eqs. (50), which represent the necessary
Green's functions. As a simple example, setting M = mdt and inte~-
grating over the segment from -a to a, the solution for a bi-material
plate with a crack opened by equal and opposite bending moments of
uniform intensity m is obtained:

Hylytuy)

m z-2iyxa
él(z) D1(3+\)1) [ul(y+uz)+u2(\(u1+1)] X(z) ~ 1]
vlyu,t1)
§Z(Z) = W]Ql(z) (51)
and
Moy tl)
Q,(z) = - [-—FH—Z——JQI(Z) » Q,(z) = - [yuy124(2)

Alternatively, eqs. (51) may also be found directly from eqgs. (23) to (26)
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with mi = m; =m, f-*l. = f; =0, and A1 = 0 ensuring the single-

valuedness of the displacements.

Returning to the problem of concentrated couples, it should be
remembered that egs. (50) were derived from the statically-equivalent
boundary conditions, egs. (6), instead of the exact ones as mentionned
earlier. Owing to such an approximation, the flexural stress distribu-
tion, computed from egs. (50, in the immediate neighborhood of the crack
point will naturally be Affected. However, the modified boundary condi-
tions do not alter the qualitative character of the flexural stress singu-
larities. Keeping this in mind, the oscillatory behavior of the crack-
tip flexural stresses and displacements will be studied.

It is of interest to compute the stress component 0_ along the
interface y =0, |x| >a. For brevity's sake, let b =0.” From eqgs.
(1), (2), (44), and (50), the bonding stress is found:

12Mé h t+a
- (Uy)y=0 = h3 (%) COSZ'II'KZ cos [ " 10g (_t"'—a: )] » |t| >a (52)
t -a

Notice that both tensile and compressive stresses exist near the ends of
the crack. This is mainly because the sign of (GY)Y’—'O changes infinitely

often as t approaches the values -2 and a . Similar oscillations have
geen observed in [2-6] for the case of dissimilar materials under plane
extension. However, it is not difficult to show that this oscillation oc-
curs at a distance close to the crack tip. To this end, the value of t at
which (Gy)y-O changes sign will be determined from

+
nlog({?%) = d:lg- s lt‘>a

where % is a bi-elastic constant given by eq. (29). It follows that

2
a = ittarﬂl[-ﬁg'g—'ﬁ'] s ‘tl >a (53)

in which
My YHgtl
uyp vha

For a bi-material plate with elastic properties E1 =3.1X% 107 psi, E2 =
107 psi, Yy, = 0.30, and v, = 0.22, the constant B equals 1.831. If

r denotes the radial distance measured from the crack tip, then t-a =r
and the first zero of (cry)y___0 takes place when

7 (54)

rla = 1.64x10°
It is apparent that the oscillation of stress is confined to very small
neighborhoods of the end of the crack where the infinitesimal theory of
elasticity is no longer valid.
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As remarked in [3, 5] concerning the plane problems of cracks,
there is a tendency of the upper surface of the crack to interfere with the
lower. Such a phenomenon can also be observed in the present problem
of flexure of thin plates. Computing for the normal displacements of the
crack surfaces from egs. (5)and (50), the result is

+ - &M v (g My (L)
V=N, = =
1772 7 ", Dy B4y 1+an”

J[cos(xlog —;:—) +

|

+ 2y sin(x log%)] (%)2 (55)

where 4 = 2a , the total length of the crack. Thus, the sign of the normal
displacements is seen to change rapidly as the crack tip is approached so
that effectively certain parts of the crack boundary may overlap one an-
other. On physical grounds, this kind of interference is not admissible.
Moreover, for cracks under flexure, further complication arises due to
the fact that crack edges on the compression side can make contact.

Such an implication has been ignored in the solution of the present prob-
lem and must be taken into account when the theory is verified experi-
mentally.

Periodically Spaced Cracks at the Junction of Two Joined Plates

The solution for the problem of an infinite series of equal cracks
of length 2a and spaced at constant intervals b (> 2a) along the interface
of two plates bonded together can be obtained in a manner similar to that
of a single line crack. The bi-material plate is infinite in extent with

uniform bending moments (M:Zo)1 p (M;O)Z , and M;.’o prescribed at in-
finity. :

Starting from eqgs. (40), the functions P_(z) and X(z) must be
rearranged for (2n+1) equal segments by letting

a_:jb_a,bj=jb+a,j=o,i1,iz,...,in (56)
J
Thus, the Plemelj function may be written as
. 2 3-in
2 R +a,“ 2
X(z) = (-1)? b7 ) {(z+a)e™ I [1- (58 ]
j=1
1 n _ 2 -;"i-i;{
s (Z_a)g+l’)4, Ir1- (z‘ a) ] } (57)
- jb
j=1
and Pn(z) becomes
2n 2 - ztc “
P (z) = A (-1)"Pn!)(ztc) T [1- (=) ] (58)
n (e} J=1 Jb
where c = AI/Ao . Knowing that
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o 2
(ra) I [1- (30 ) = 2oin (XG0

J=

in which d may stand for c or *a in egs. (57) and (58), the ratio
Pn(z)/X(z) tends to the limit

m(z+a) 4 in
—ryP“(Z) = A, sin (T2 in? (22) - in2<ﬁ)1—z{—r31n[ s 1 6o
X(z oSt b noAg 8 b . rn(z-a
51n[—b——-—-]
as n— oo . The constant c may be determined from eq. (37):
in

a i 11({)+a) sl Tr(]t:c)]

f s dt = 0 (60)

= Jsinz(ﬂ—t)- sinZ(E)

b b

Upon integration, c is found to be
c = = 2ixa

and eq. (38) is also satisfied. The final solution in terms of Fj(z) 5
j=3,4, is

F,(z) = -l—f;[Y(vuﬁl)l‘l-(vmz)I‘Z] -
fo'e) . w(zt+a)_in
Fo(z) = (1+IJ1)MY . [-n(z-Zina.) [si Z(IE. —sinz(l@:)}-% Sln———b

4l2) = - 4D1 sin 5 Tsin 5 = T z-a)

sin
b

Egs. (61) provide the correct boundary conditions at infinity. When b
gets sufficiently large, eqgs. (61) reduce to the special case of a single
line crack, eqgs. (40).

Fracture Criterion of Cracks in Mixed Media under Flexure

Of fundamental interest is the interpretation of current fracture
mechanics theories to cracks in mixed media under flexure. In order
to be definite, the concept of stress-intensity factor [10] K., j=1,2,
used in the Griffith-Irwin theory of fracture [11], will be Jintroduced.
The theory is based upon a detailed analysis of the elastic stress field
near a crack tip. Therefore, it is limited to brittle fracture with the
possible extension to certain situations where the material in a small
region around the crack tip may yield but not apprzaciably enough to seri-
ously disturb the stress distribution outside of this region.

Now, the necessary information leading to fracture may be ob-
tained from eqgs. (23) and (24). Near a crack tip, say, b. = z., the func-
tions Qj(z) and Qj(z) may be approximated by J J
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8102 = (riu )6t a)ama ) F eGP

) (1) g y-hmin, o(3)
Qz(z) y-(yp,1+1)GJ. (z)(z zj) 2 +Gj (z)
and (62)

0,(z) = - uz(yu1+l)G§1)(z)(z-zj)-%-iK+G§4)(z)

8,(2) = - v, (v, )5 e (a2 ) 4G )

where

[e e}

k), _ (k) n _

G; (z) = Zocjn(z-zj) , k=1,2,...,5 (63)
n=

are functions that tend to definite limits as z = z, . While the magnitude
of the stress field near z, can be described by Jthe leading term, say
(1)_ C i 63). it i : defi
30 , in eq. (63), it is convenient to define
12 \/2D1(3+\,1) u,
— [ tlwr TE C

1
= -1 = - 2
K K1 1K2 >

h

(64)

so that when and y =1, eq. (64) reduces to the definition of
K.,j=12, ised” in the homogeneous case [10]. Egs. (62) to (64)

Jilrnply that in the limit as z - z,, the stress-intensity factors K, may
be found from the formula J J

12\/21) (3+v)) u, witl i

i h? [ul ( YHu, 2 zL—:n -2 jiHix 2)(=) (65)

Once the critical values of K., j= 1,2, are determined experimentally
for a given combination of the two bonded materials, they may be used
to predict the onset of rapid fracture of cracks under the action of flex-
ural loads. It is reminded again that special attention must be given to
the e asurement of K. in connection with the contact of crack edges on
the compression side * of the plate. Nevertheless, it is of interest to
list the results of K. for some basic problems of practical importance.
The following values of K, are computed from eq. (65) together with the
stress functions of the various examples discussed before.

(1) Single crack of length 2a is situated along the bond line of two
plates of dissimilar materials with uniform bending moments M%® at
large distances from the crack. ¥
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(e 0]

6M Va
Kl = ___Lhz Toshn [cos(xlog2a) t+ 2x sin(nlog2a)]

oM™ o (66)
K2 = ——h—zy— T [2x cos(nlog2a) - sin(xlog2a)]

(2) Equal and opp051te couples of magnitude M are applied to
the crack surfaces at x = b , where the line crack extends from -a to a
(>b) and lies between two joined plates.

Kl = - ﬁcos{nlog FZa( }

Ky = é_l\_g__l_ .:‘—t%sm{xlogfza( +b)]}
h™ mva

(3) A row of straight cracks each of length 2a are equally spaced
with distance b along the interface of a bi-material plate subjected to

(67)

bending moments M;.’O at infinity.

6M™ 1
K) =—5"~ (“‘) cosh™ ! (mn) (tanz(—')co h(—-—n )cos{n log[— sin( ZTra)]}
h

+ cota(——-—)smh( 5 n)sm{xlog[—mn(—)]})
(68)
6M? 1 L ra 2ma 2ma
K ———Y—( )cosh (11;4.) cota(%)sinh(Tn)cos{nlog[—51n(———)]}
h

2
= )sm{nlog [— sin(—— g )]})

Egs. (68) reduce to egs. (66) when b is large in comparison with a . In
the homogeneous case, they become

6Moo b na
K =__2Y_ ‘};tan(—g- . K, = 0 (69)

h

1
- tan? (l%a)c osh(

which is similar to the corresponding problem of plane extension.

The dependency of K., j = 1,2, on the bi-material constant x
in eqs. (66)to (68) show that Jcra.cks found at the interface of two dissim-
ilar materials will not extend in a planar fashion even if the bending mo-
ments were applied symmetrically with respect to the crack line. Unlike
the homogeneous problem (x = 0) of symmetrical bending, where a single
stress-intensity factor is sufficient, the bi-material problem requires

both K1 and K as illustrated by egs. (69) and (68). Hence, the simple
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extension of the Griffith-Irwin theory of fracture to cracks in dissimilar
media must assume that the combination of K, and K, will cause the

onset of rapid fracture upon reaching some critical” value, say fcr sl eoy

(K, K,) = £ (70)

regardless of the symmetry conditions of the external loads. The form of

f(Kl’ KZ) can be found experimentally for various combimations of the
bonded materials.

Conclusions

The flexural problem of two bonded plates of different materials
with cracks along the bond line has been reduced to the problem of Hilbert
in complex function theory. The method of solution described earlier can
be transferred to the problem of an infinite plate containing a circular in-
sert of another material partially joined along a finite number of arcs.

Oscillation of the stresses and wrinkling of the displacements
were observed in regions extremely close to the crack tip, where the
linear theory of elasticity fails to hold. Such phenomena are not uncom-
mon and can also be found for cracks in homogeneous materials subjected
to mixed boundary conditions. For example, the problem of a straight
rigid bar welded to the lower edge of a crack, while the upper edge is free
from tractions, can be easily solved to show that the stresses and dis-
placements near the crack tip change sign an infinite number of times.

It should be pointed out that since Kirchhoff boundary conditions
were used, the present solutions will not be accurate near the crack
boundary. However, the order of the crack-tip stress singularities
derived from the Kirchhoff theory is not expected to change were the
problem solved by higher order theory such as that developed by Reis-
sner[12]. This is evidenced by the analogous bending problem of cracks
in homogeneous plates discussed by Knowles and Wang [13]. From the
fracture mechanics point of view, therefore, the stress-intensity factors
K., defined in the present paper, may be used with sufficient confidence
to' determine the critical length of cracks in bi-material plates.
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