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Continuum mechanics and range of atomic cohesion forces

E. Kroner

Abstract

The conventional continuum theories of solid state physics
are based on the supposition of an infinitesimal range of the
atomic cohesion forces. Hence, these theories are not the right
tool for handling problems in which experimental or model
lengths which are not large compared with the range R of these
forces play a role. Problems of this kind deal primarily with
crystal defect interaction phenomena which strongly influence
the macroscopic properties of solids.

Since a finite force range is not in contradiction with
the continuum idea itself, the local theories can be generali-
zed as to include the nonlocal phenomena in solids. The theory
is given for the property of elasticity. Other properties
would lead to similar theories. The resulting integral equation
has been solved rigourously for one class of problems with the
following result: The displacement field due to a point force
in a medium which responds locally and the displacement field
in a medium responding nonlocally, in which the acting forces
are distributed over the range of the cohesion forces, are the
same. Thus it is shown that the nonlocal theory deviates to a
considerable degree from the local theory in the case of far-
reaching atomic forces. Furthermore it is emphasized that for
a medium responding nonlocally the situation in a surface layer
of thickness R is quite different from that in the interior of
the body.
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1. Introduction
—=—-nktroduction

To_ a
lengthsul which stro i i
ngly influence its physi ies:
glg the lattice parameter a, Y RAERS praperiiee:
2) the range parameter R of the atomic cohesion forces.

e ?:hsituations where all occuring lengths are large compa-
wi a and R, the finiteness of a and R has been neglected

and continu i i i
ey um theoretical methods were applied with great suc-

i thIn ;ecent time,‘continuum theories were often used, even
2 e above assumption is not fulfilled necessarily, namely

;;th:; are essential for the phenomenon of fracture. Here,
’ e sofcalled surface of fraoture plays a role the "thick-
ness" of which is very small. '

s Thelapplication of continuum theoretical methods is justi-
o rés ong as the smallest characteristic length of the
eXpe 1m§nt, which will be called the smallest "test length" L,

?:?erlzhy51cal'properties as well. As for electrodynamics, cf.

one-Of t;s :a81ly Seen that the conventional concept of stress,

ot s € fTundaments of elasticity theory, breaks down when
Sion forces of a finite range are accounted for,

definz:igﬁl:fend consider the usual idea which leads to the
by a cut ) Stress, Separate two parts I and II of the body
iy oo tﬁ ;.s. remove the fgrces acting between I and II.
et b ath Y the cut no displacement in I, say, is to hap-

. n € compensatory forces dp per area element dS which

2, i
iz::ead of one lattice and range parameter several parame-
repremayt°:9ur. The limitation to one is for simplicity of
o~ esentation only. The theory itself 4 i
this restriction. Y ¢ daes met Santedn
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correspond exactly to the response forces exerted on I by II
before cutting must be applied along the surface of I. Hence
the stress tensor 6 defined by dp = dS.6 measures the response

at point r of the uncut body.

This definition of stress implies that it is possible to
apply forces in the cut face such that no displacement occurs
in I. Obviously this assumption is not justified if the cohe-
sion forces have a finite range. The forces exerted by II on I
then also act in the interior of I. If we separate II from I,
then the compensatory forces must be applied inside I too. In
this way, the definition of stress above breaks down. It will
be shown in the next section how elasticity theory can be gene-
ralized to include the effect of a finite range of atomic for-

ces.

2. Nonlocal elasticity

The characteristic feature of a finite range of cohesion
forces implies the interaction between two volume elements dV
and dV', say, situated at positions r and r'. The internal
energy of the body then has the form

U= 4 [favdyueme

where u(r,r') is a two point energy density.

(1)

Let AU' be the increase in energy over the energy Ug of
the nondeformed body. Then u = 0 for zero strain. We shall
denote the strain tensor in cartesian cordinates by Eij- In
a linear theory Au(r,r') is proportional to £ j(r) and
€ k1(r'), hence

I ! |
1 - !
. . Sw or (2
AU = 3 |[dVdV Cirpg (67D €M £ ery, )

The proportionality quantities cjjk1(r,r') will be called
the (nonlocal) elastic moduli of the material, since they are
the quantities which specify the elastic properties of the mate-
rial. To give the theory a simpler form we shall restrict
ourselves to moduli of the form

Ciaetmr') = K (tr=x") C;J'e,e (3)

3. The general case can easily be treated in the same way.
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where the Cji jk1 are constant in any cartesian frame. The func-
tion K(|r-r'l') gives the decrease of the cohesion forces with
distance. An especially simple form of K would be the delta-
function O(|r-r'|). In this case, one integration in ( 2 ) can
be performed, and one falls back to the local theory.

Next we replace the strains by displacements s;i(r) usin
; g
the well-known formula E‘.'J. = %_( asj/Ax; + as;/axa-) agd obtain

I 4 oo I f (35;(*) 959“‘)
AU'= 1 jd.\/d'\/ C;jb_& K(W—T") g;b "[)X'IQ P (%)

The potential energy of external volume and surface force
densities F(r) and A(r) resp. can be written

Ay = En—) g}. (r) dV + A} () Sai(r) d S, (5)
The kinetic energy is, using < for mass density,

[N
T-= 7_953'53'. (6)

_ Applying.the well-known variation formalism to the Lagran-
gian L = T-AU'-AU" we obtain the equations of motion

f . ‘
J‘OIV'K(IT—T'U E(r') - [45 K(lr—f'l)Qj(r') = oS0+ F;(r) (7)
and the boundary conditions

I /D v
fcl\/ Kur-v') m, C;J‘u 9—%—) 3 Aém’) (&)

where n; denotes the external surface normal,
In (7), the following abbreviations have been used:

s, (+')

Ve ()
C RPN s Wl = - P(Tl) h‘(T,) C;‘ée (B f = QL‘Y) (9)
i ) v ¢ X& e

- . ]
GB Dy Dx
¢ &
Eqs. (9) are the static equilibrium and boundary conditions
of the local elasticity theory, if Pj and Qj are interpreted

as volume and surface force densities.

The appearance of the surface integral in eq. (7) shows
the important fact that the equations of motion have a very
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different form near the surface and in the interior of the
body, i.e. in distances from the surface which are larger than
the effective range of the cohesion forces. So it turns out
that the surface layer can have quite special properties.

We shall confine ourselves to static situations and will
not consider boundary problems. In many cases of practical im-
portance as often in the defect interaction problem the boun-
dary effect is negligible, i.e. the body can be considered in-
finite. The basic eqs. (7,8) then reduce to a single set of

three equations:
jo(\/'K(mr'u) Pg‘*') - f‘;-m—). (t0)

These are Fredholm integral equations of first kind with
Kernel K for the determination of forces Pj(r) which produce
the same displacement field in a body responding locally, with
elastic moduli Cijkl, as do the forces Fj(r) in material respon-
ding nonlocally. By solving this integral equation for Pj, the
problem can obviously be reduced to one of local elasticity.

3. An exact solution

The methods for solving Fredholm integral equations are
highly developed. We shall not use these methods here, but
rather guess a certain class of solutions. Let PJ be a single
force acting in the origin. Then Pj(r') = P% &(r") where the
constants Pj give direction and size of the force. Introdu-
cing this into eq. (10) the integration can be performed,
which yields

R = B Kar )

for any K.

We see: The force density BK(Irl) in the "nonlocal" body
produces the same displacement field as a single force with
magnitude and direction of P35 does in the corresponding "local"
body. Hence considerable effects of nonlocality occur if the
range of the cohesion forces is large.

4. Stress in the nonlocal theory

We now return to the concept of stress. In the local
theory the stored energy is

Au' = 12 55 Ecéw-)o(\/. (12)
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i We decide that this equation is true in the nonlocal
heory.too. ?his implies a new definition of stress &;;. By
Comparison with eq. (2) we find the nonlocal stress-strain
relation

. i l
Sl = JCLJH () g erd d V- L13)

. Observing that the nonlocal stresses have the same dimen-
Sion as the local ones, we obtain the following physical mea-
fing of the Gjj(r): they measure the resultant of all forces
yhlch tug at an area element at point r,. These forces are the
interaction forces between the area element considered and all
the volume elements. In this way the concept of nonlocal
Stress appears as a natural generalization of the concept of
local stress.,

. ?ntroducing Fourier transforms for the quantities appea-
ring in eq. (13) we arrive at elastic moduli which depend on
the wave vector k. This dependence is due to the nonlocality
of t?e response. Hence, the response to a spatially periodic
s?raln depends on the wave length. In the case of time-perio-
dic Processes the elastic moduli, of course, depend on the
frequency_ W, too.

a §1mllar pPhenomena have been studied recently in electro-
ynamics, Especially the k- and w- dependent dielectric con-
stant of the electron gas has been discussed extensively (see
e.g. (2)). The origin of the k-dependence is again the finite
range of interactions, namely of the Coulomb interaction be-

tween electrons,

5. Conclusion

Nonlocal theories have been considered in several bran-

;hes of physics, especially in modern quantum field theories.

ere we Suggest that nonlocal theories, mechanical as well as
electromagnetical, shall be applied for the explanation of
the behaviour of actual materials. Of course, not all materi-
als beyave the same way in this respect. It will be one of
tpe main problems of the near future to find out which mate-
rials react more local and which less., This means that one
needs estimates of the nonlocal moduli Cijkl, e.g. It is
clear that this information does not evolve from the present

'Two further results of nonlocal elasticity might also be
menﬁloned. (i) The theory can easily be formulated for incom-
patl?le Problems., In that case stress functions are introdu-
ced instead of displacements. This formulation, which will be
given elsewhere, is convenient for problems with continuous
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defect distributions and perhaps for temperature stress pro-
blems.

(ii) If the cohesion forces are rather short-range, only
volume elements in closer vicinity contribute to the energy.
One can then develop £(r!) in terms of €(r) and its deriva-
tives. The integration over r' can now be performed formally
and leads to a number of spatially constant material tensors
which are assigned to £ and its various derivatives. Formally
defined response tensors then appear as local stresses of
higher order (multipole stresses). Cutting off the develop-
ment after the second derivative of € leads to a couple stress
theory as discussed by Toupin (3) and the author (4). The
couple stresses do in fact take into account to first order
the effect of the nonlocality of the response.,

In conclusion one more remark: I do not think that all
former results on defect interaction etc. are essentially
wrong. However, one has to be aware of the finite range of the
cohesion forces which exists in all real materials and which
sets definite bounds to the applicability of the local theo-
ries. In extreme cases, conclusions drawn from these theories

may be in error even qualitatively.

It is hoped that the solution of problems by the nonlocal
theory will further clarify the situation.

This work was supported by the Deutsche Forschungsgemein-
schaft.
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