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Abstract

The bubble raft analogue of a crystal comes closer than a power function
to describing the short-range repulsive forces at the small strains that
govern fracture, The long-range attractive forces in both bubbles and metals
mean that vacancies, stacking faults, and grain boundaries have little effect
on the fracture strain, and even dislocations reduce the fracture strain by
only a factor of two or three.

The core of a dislocation is described in terms of partial dislocations
that are the vector sums of the non-linear displacements between the atoms
over Burgers circuits containing as few as three atoms. Four types of dis-
tributed dislocation cores were observed, depending on the biaxial stress,
The rather large sizes and distinct types of distributed dislocation cores
make it difficult to predict fracture from linear elasticity and surface
energy concepts. ;

In view of the low fracture strains for "hard" force laws, fracture will
occur due to triaxial tension in front of a notch in such materials, before
fully plastic flow can occur, if the ratio of flow stress to modulus of elas-
ticity exceeds about 27,
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Introduction

A bubble raft provides a two-dimensional model at a visible scale of
edge dislocations in a crystal.

Previous studies (1, 2, 3) have been concerned with the configuration
of dislocations or their motion in rafts under shear or uniaxial stress.
These loadings have not produced fracture (except for one case involving
dynamic loading (L4)). 1In the present work, biaxial tension was applied to
produce fracture. Biaxial tension corresponds to spalling in a real crystal,
in which the reflection of stress waves produces high, nearly triaxial ten-
sion. It also simulates the state of stress in front of a sharp crack in a
hard alloy. The crack cannot be modeled directly with a bubble raft because
of the low stress required to move dislocations in a bubble raft in the ab=
sence of three-dimensional dislocation tangles, and the large rafts required
for enough dislocations to simulate a plastic continuum,

Ideal Cohesive Strength and Strain

The classical calculation of the cohesion of a metallic crystal is that
of Fuchs (5), shown in Fig, la. Although the value of the cohesive strength
is largely determined by the slope of the attractive energy potential, the
cohesive strain is determined by the high curvature of the repulsive poten-
tial as it falls to zero. Differentiation indicates a ratio of cohesive
strength to bulk modulus of 409 at a strain of 0,0LS.

The attractive and repulsive energies are often approximated by a power
law expression. To give zero stress at an equilibrium radius r = o the
energy per unit mass may be assumed to be of the form

U=a L _n/ ) (1)
(r/ro) (r/ro)

The radial stress is found by equating the change in energy of the mass
hvporg /3 to the work done, and then rearranging the equation:

_ B r -1 1
9y = 3 l- m+3 * n+3 (2)
(r/ro) (r/ro)

The radius at which the stress is a maximum turns out to be

r
== [(m3)/(ne3)) M/ mom) (3)
o

The ratio of ideal cohesive strength to bulk modulus is ¢ /B, This would be

the volumetric strain at o_ if the behavior were linear. The corresponding
normal component of strain, oc/BB, is easier to compare with the cohesive
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strain (at the cohesive strength), (rc-ro)/roz

n+3 m+3
S % (ﬂ)m-n (ﬂ)m“n
3 -(m-?} m+3 ~ '‘m+3 . (4)

“he ratio of bulk modulus to binding energy per unit volume, B/pOIUOI,
is

8/p, 1U_] = mn/9. (5)

The attractive force is relatively long range. For an ionic crystal
the exponent n is 1, and Fuchs' calculations indicate an even flatter rela-
tion for copper. For the repulsive energy, the results for a number of val-
tes of the exponent m are presented in Table 1, along with the results of
Fuchs' calculations. A very large value of m is required to simulate the
high curvature in the repulsive force law near the cohesive strength, but
then the magnitude of the energy is in error. No value of m seems to give
& good fit for copper. For the alkali metals Seitz (6) suggests m= 3,
except for lithium for which m = 2 is a better value.

For bubbles, the force law has been accurately calculated and experi-
mentally verified by Lomer (7, 8),and is summarized in Table 2. Here again
there is a high curvature of the repulsive potential as the cohesive strength
is approached. and the bubbles lose contact with each other. For a two-dim-
ensional array, Eqs. 3 and 4 take on the form

-1 1
. - c . (1)
£ (r/ro)m+2 (r/ro)n+2 g
r /r, = [(ms2)/(ns2)] Y/ (20) (8)

with corresponding changes in the other equations, which are not of interest
here. The results for various values of the repulsive exponent m, in Table

2 indicate that again it is not possible to choose a value of m that gives a
good fit. It thus appears that the bubble model is a better representation
of the cohesive behavior of copper than any simple power law. Similar diffi-
culties would be encountered with a Born-Mayer type of exponential law for
the repulsive force. As suggested by Lomer and shown in Fig. 1b, taking a
dimensionless bubble size of about a = 0.4 (1.2 mm bubble dismeter) gives the
best fit in terms of the ratio of slope to ordinate of the potential at the
equilibrium spacing. For similar curvatures, this would give identical co=-
hesive strains,

Representation of Distributed Dislocation Cores by Partial Burgers Vectors

Viewed in cross-section, the core of a dislocation is not a point, but
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is spread out, as shown by the examples of Fig. 2. The spreading out in-
creases with transverse tension, as we shall see here, and with thermal
motion, as noted by Fukushima and Ookawa (3). The types of dislocations can
be divided into two broad categories, depending on whether or not, at the
center of the disloeation, atoms or interstices were across the slip plane
from each other. The types could be further classified according to the
shape of their regions of maximum misfit: straight, V-shaped, or triangular,

As a concise shorthand for these various types, the convention was
adopted that the extra half planes (heavy lines) of the conventional repre-
sentation would be drawn to meet the slip line (light line) at the same point
for atom~centered types, but would meet the slip line at separate points for
interstice-centered types. On the tensile side of the slip plane the regions
of lowest density are shown by dashed lines, giving the diagrams shown in
Fig. 2.

These dislocations can be described more quantitatively by describing how
much of the dislocation strength lies within any polygon formed by as few as
three atoms. Thig strength will be termed the partial Burgers vector. In
the past, this term has been applied to partial dislocations bounding a
stacking fault. These have discrete crystallographic orientation and magni-
tude. The much smaller partial Burgers vectors considered here might be
called "hyper-partial" dislocations, but such emphasis is probably not needed.
Partial Burgers vectors can be found from the relative displacements (from

atoms in the lattice, by adapting Kroner's (9) ideas for continuous errays of
dislocations. See also Kondo and Yuki (10). The line integral of the rela-
tive displacement around a circuit is zero, but it can be thought of as con-
sisting of the sum ff linear and non-lineer vector parts (termed "elastic"
and "plastic" by Kroner):

@ = 0 = avt + &, (9)
The separation of the displacement into linear and non-linear parts can be
made if a force law can be defined for pairs of atoms. The parts of the rel-
ative displacements are those which would be found for the assumed forces if
the force law were linear, as shown in Fig. 3. The fraction of a dislocation
contained within a triangular circuit is given by either the linear or non-
linear integral of Eq. 1, with the sign taken to be that of the integral of
the linear displacements.

Note that for a circuit around a large number of atoms containing a unit
or perfect dislocation, the line integral is taken through material which is
very nearly linear, except for the point of the circuit through which the
dislocation entered, Integrating the linear relgtive displacements around a
circuit that would close in a reference crystal gives the usual Burgers vec-
tor. On the other hand, the integral of the non-linear displacements is zero
except for the element through which the dislocation entered. If the force
law is chosen so the force vanishes for a unit displacement, then for this
element the non-linear displacement is the negative of the Burgers vector.,
Thus the line integrals of Eq. 9 reduce to the conventional definition for
Burgers vectors of unit size,
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It is evident from Fig. 3 that the magnitude of a partial Burgers vec-
tor depends on the shape of the interatomic force law. Since unit dis-
placements in a lattice return the force to zero, the force should depend in
a periodic way on the relative displacements. Furthermore, the force law
should be chosen so as to give the same configuration whether the dislocation
has come in from one direction or the other, even though the displacements are
different, This is accomplished by making it anti-symmetrical, as well as
periodic. Finally, since the very concept of a pair-wise interatomic force
law is already an approximation, it is not unreasonable to assume for simpli-
city that the force law consists of straight line segments, as shown in Fig,
4. The linear and non-linear parts of the relative displacement vector are
taken to be co-linear with the total relative displacement vector.

To gain insight into this representation of distributed dislocation cores,
consider the modes of deformation of a triangle shown in Fig, 5. Because the
definition is based on relative displacements, there is no effect of rigid
body translation. Rigid body rotation and pure dilatation of equilaterial
triangles or squares produce equal relative displacement vectors that form
regular polygons and sum to zero, The non-linear parts also form regular
polygons that sum to zero. Combined translation and rotation, shown in Fig.
5a, is no different from pure rotation, In Fig, 5b, the relative motion of
Just one atom produces no net Burgers vector because the two non-zero rela-
tive displacements cancel. The equivalent isoceles deformation of Fig. 5c,
which is similar but with a superimposed rotation, does have g Burgers vec=-
tor (Fig. S5c). This dependence on rotation is neither surprising nor unre-
alistic in view of the non-central nature of the force field. It means that
the coordinates used for each triangle must have the same orientation, al-
though they may have different origins,

Ideally, the choice of the triangular net should be immaterial., Actual-
ly, there is an effect, as illustrated in Fig. 6, for an idealized straight
edge dislocation. In Fig. 6a, the relative displacements were those which
would arise from a dislocation sliding in from the right. 1In Fig., 6b, the
relative displacements are those resulting from condensation of two half-
planes below the slip plane. Care must be taken that the topology of the
reference net is preserved, so that a collapsed set of triangles, one con-
taining a small partial Burgers vector, appears in Fig. 6b at the site of the
missing half plane. Alternatively, the partial Burgers vectors may be drawn
on the original reference lattice as shown in Fig. 6c. This representation
has the advantage of focusing attention on the Burgers vectors rather than on
the deformation of the grid, but some of the symmetry and a feeling for the
deformation of the lattice are lost.

The one free parameter in a force law of the idealized type shown in Fig.,
b is the relative displacement at the cohesive strength. For such a large
value as w_/b = 0,25, used in Fig. 6, the relative displacements of nearly all
triangles are completely within the linear range and hence most triangles
have no net Burgers vector. The dislocation then appears concentrated near
its core. With a lower value of the critical relative displacement, w /b =
0.10, the partial Burgers vectors are more spread out, as shown in Fig: 7.

From Tables 1 and 2, a more realistic critical relative displacement is
wc/b = 0.05. In order to reduce the computation time, a computer program
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was developed which accepted as input both the coordinates of the bubbles
and a tabulation of which bubbles belonged to each triangle., The computer,
through a plotter, produced a diagram of the deformed grid and the partial
Burgers vectors (complete with arrow-heads). A memorandum describing the
program end a program listing in the Fortran language are available on re-
quest. The resulting arrays of partial Burgers vectors are shown in Fig.

8 for each of the types of dislocations of Fig. 2. Areas where adjacent
vectors are the only non-linear ones in a triangle give pairs of equal and
opposite arrows, These arrows are much reduced if the critical displacement
w_/b is taken to be 0,10 instead of 0.05, as can be seen from a comparison
of Figs. 8a-1 and 8a-2,

Experimental Procedure

Biaxial tension was produced by the equal outward motion of the three
vertices of an equilateral triangle of rubber strips. This triangular bound-
ary, to which the bubbles adhered well, was partially submerged in a bubble
solution of the type used by Bragg and Nye (1). The necessary measurements
were taken from motion pictures.

Even the "perfect" rafts occasionally had two or three bubbles perhaps
15% undersized. If these were not close together fracture often occurred
elsewhere, so the rafts did not appear to be weakened.

Prestrains of +1 to -U4% were present in the rafts, depending on the orig-
inal dimensions of the triangular boundary, the size of bubbles used, and the
amount of breaking or adding of bubbles necessary to get the desired raft.

The equilibrium spacing was therefore determined from a freely floating bubble
patch after fracture.

To evaluate the error in strain measurement, about thirty readings were
made of ten-~bubble rows in one free-floating patch. The scatter amounted to
about 1% strain.

To estimate the magnitude of viscous effects, a run which contained the
trensition from a V-type to an atom-centered triangular dislocation was ana-
lyzed. Fig. 9 shows the variation of strains, both internal and external,
with time. The transition took place in something less than two seconds,
negligible compared to the 50 to 100 seconds required for a typical run.

Fracture strains

a. Perfect lattice. The data for perfect rafts are shown in Fig. 10a.
The vertical bar indicates 95% confidence limits for the mean strength, ob-
tained by extrapolating the fracture strains for all diameters to a common
value of 1.2 mm along the approximate least squares line which is shown.
Assuming a normally distributed population, the confidence limits were ob=-
tained from the range of the sample, using convenient plots (11).

Because the attractive forces are so long range, the strain required to
reach the cohesive strength is the equilibrium compression Ao given by
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Lomer ((7), Fig. 2 and (8), Fig. 3)1. The data are about 30% below the
theory, which is not surprising in viev of the uncertainties of measurement
and the possible variations in bubble size.

b. Single dislocations. Data from rafts containing single dislocations
are shown in Figs. 10b, ¢, and d, classified according to the type of dislo-
cation existing at fracture. In many runs an initially atom-centered,
straight dislocation transformed to the interstice-centered V-type, and
sometimes later to one of the triangular types. The Burgers vectors are un-
affected by these transitions. Very seldom did fracture occur from a V-type
dislocation before the transition to the atom-centered triangular type. Be-
cause of this, and because the fracture strains of the two types were not
significantly different, both were included in Fig. 10c. The transformations
seemed to be reversible, judging from e few experiments in which the straining
was changed from tension to compression and back again.

In spite of the experimental uncertainty, it appears that the V-type and
triangular dislocations reduce the fracture strain by about a factor of two
from the experimental data for the perfect lattice, With perfectly uniform
bubbles, one would expect the reduction in strength to be somewhat greater,
perhaps a factor of three, since any reduction in fracture strain due to un=
even bubble size is more likely to appear in the perfect raft than in one
with a dislocation, where the fracture must occur at the dislocation.

As regards mode of fracture, the perfect rafts usually cleaved in what
would be a 112 direction in a face-centered cubic crystal. In the one ex-
ception, two 1/2 (ll;) dislocations of opposite sign nucleated spontaneously
and separated to create a stacking fault which then cleaved. The straight
dislocations cleaved parallel to the Burgers vector, although occasionally
odd bubbles stuck to the wrong side of the crack. The vee and triangular
types tended to cleave on cne of the <ﬁll>'directions at 60° to the Burgers
vector, shown as dotted lines in schemstic diagrams. of Fig. 2, but frequent-
ly changed from one of the two directions to the other.

One possible analysis for the sensitivity of dislocations to tension
arose from the observation that the width of straight edge dislocations in=-
creases under tension. Since the growth to infinite width would contribute
to fracture, it was considered as a limiting case. Following the analysis of
Lomer (8) for the force acting across a section in the raft, the potential v
can be given in terms of a function of the bubble size, @, the characteristic
range of action of the meniscus, a , defined in Table 1, the dimensionless
bubble radius a, and the spacing — between the planes, 4, by

v = L.705 8

a

ne'nd/ao

=1

8~

1

A of (8), Table 3 is not quite consistent with this, but agreement is found

from 8 =6 (1 + 2y), with §, from (8), Table 4 and y from (8), Table 3.
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As the dislocation grows to infinite width, the stacking across the plane of
the dislocation changes from the hexagonal close-packed to the simple cubic
type. The effect is to increase each distance between a pair of planes
8cross a crack by the amount 2R(1-/3/2). 1In terms of R/a° = a, the potential

is then changed by the factor e-(2-/3)a. In order for this transformation to
oceur it is necessary that the work done by the applied stresses acting through
this displacement be equal to the change in potential energy., In Table 3 the
required forces are compared with the theoretical strength of the raft for bub-
bles of various sizes. Because the attractive force is so long range and the
force falls off so slowly with increasing spacing, the stress must be very
nearly equal to the theoretical strength before the dislocation widens,
Therefore, the videning effect Der se was not expected to, and in fact did
not, play a large role in the initiation of fracture from dislocations.,

A second analysis which might shed light on fracture from dislocations is
that due to Stroh (12), (See also Bullough (13)),

This analysis requires the variables of Table h,which were evaluated from
Lomer's study of interatomic forces, The resulting equation, plotted in Fig.
11, is

L AT n\T 1/2
a=—H__ [, +y (1 -3 )y
nTz(l-v) R 2y

This analysis indicates a crack length roughly that of the size of the highly
strained region in the triangular type of dislocation. On the other hand,
the analysis indicates a higher fracture strain than observed, and fails to
indicate the strong effect of bubble dismeter. Evidently, the linear theory
in this form is inadequate to explain the phenomenon in view of the highly
non-linear and long-range forces.

¢. Vacancies or dislocation airs, Geometrically, a row of several va-
cancies can be thought of as a pair of edge dislocations of opposite signs
on parallel planes., The vacancies might form a crack and thus be more seri-
ous than separate dislocations, Actually, the vacancies did not form a crack
which then split open, but rather formed multiple vacancy arrays of the type
previously reported (2,3). Arrays with four or fewer vacancies had little
effect on the fracture strain, as indicated in Fig. 12, Direct evidence for
the high strain was obtained from the fact that in one case a dislocation
spread as a stacking fault all the way from a vacancy array to a boundary
and even reflected from the boundary, as shown in Fig, 13, Judging from the
preceding analysis for a stacking fault, the strain in this case must have
been within a very few per cent of the theoretical strain, although the
measurements had indicated a somewhat lower value. Even for arrays of nine
vacancies, dislocation pairs did not form. Although the strength decreased,
it did not appear to drop below that of individual or isolated dislocations,

An estimate of the applied strains required for dislocations to produce
cracks which then fracture can be made by assuming that the critical part of
the process is the growth of a crack from either dislocation about a third
of the way towards the other, during which time interaction effects may be
neglected. The resulting curve, shown in Fig. 12 again indicates the insuf-
ficiency of the linear theory.
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4. Grain boundaries, For these experiments the straining frame was en-
zurged from 7 em to 10 cm on a side to accommodate rafts containing a single
#rain in the center. Almost all the grains had a 30° orientation relative to
ench other, as in Fig, 14, The summary of results in Table 5 indicates that
fractures tended to occur where the grain boundary was parallel to one of the
2lcse packed rows rather than where it made an angle of 15° with the close
pseked rows in each grain, Again the long-range action of the attractive for-
2¢8 played an important role, here by making the atoms adhere closely either
%9 one grain or the other,and by maintaining the attractive force between the
#rains even over a relatively large separation., As a result the grain boundary
#trengths were nearly identical with those of the perfect rafts, as shown in
Plg. 15,

flitimate Notch Toughness of Crystals

Judging from these results, even in ductile materials a strain of the or-
dsr of two per cent under triaxial tension will open up dislocations and thus

__¢suge numerous fracture nuclei, These nuclei will in turn give macroscopic

fracture by the growth and coalescence of holes. If this conclusion is cor-

f?e¢t and applicable to steel, the highest strength steel that could be made

insensitive to notches can be estimated by taking the mean normal stress to be

~ that found in the fully plastic,plane strain, externally notched case,
4 +1)Y/V/3. The required yield strength Y for a mean normal strain of 2% is

then found from
O Y(1+m) 1-2y

3 E

 Por steel with v = 0.3 and E = 30 x lO6 osi, this leads to Y = 600,000 psi,

While higher strength steels might be made, they would not be notch-tough in

_ the sense of being able to carry the fully plastic stress distribution of ap=-

proximately three times the vield strength,

Experiments on scabbing by O'Brien and Davis (14) indicated fracture at

200,000 psi of nearly hydrostatic tension in all kinds of aluminum ranging

from zone-refined single crystals to high strength alloys. The corresponding
strain is
_ a(1-2v

e = ===2L = 0067,

E

rather below the 2% strain tound here for copper, It remains to be deter-
mined whether this difference is due to approximations in the interatomic
force laws or to fracture by more complex mechanisnms,

Conclusions
A———ousions

1. The fracture strain in a perfect lattice is largely determined by the
nature of the repulsive forces, and ranges from perhaps 20% for alkali metals
to 4% for noble metals. The bubble raft analogy to a crystal structure comes
closer than a povwer function to describing the short range repulsive forces
in the small tensile strains that govern fracture.
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2. The long range attractive forces in both bubbles and metals mean
that vacancies, stacking faults, and grain boundaries produce little weaken-

ing, and even dislocations reduce the fracture strain by only a factor of two
or three.
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Table 2

Cohesive Strains for Two-Dimensional Lattices

Approximation Parameter Cohesive Strain
m n (r =r )/r
c o'"0o
Power law 3 1 0.290
5 1 0.236
9 1 0.176
13 1 0.1bLk
Bubble rart a = ro/a° do for a, = 1.5 mm
0.2 .6 0,0185
0.4 1.2 0.0LY
0.6 1.8 0.076
0.8 2.4 0.106
1.0 3.0 0.115

ao = VT?pg, where T is surface tension and pg is weight density,
For typical solution used with bubble rafts, 8 = 1.5 mm,

Table 3

Stress Required for Infinite
Stackigﬁ Fault

Dimensionless bubble size, g 0.2 0.4 0.6 0.8 1.0

Binding energy=2(surrace tension),dyne .102 38 JTU8 1,08 1.24

Faulting stress, dyne/cm 670 2,425 4,67 6.00 T.36
Theo. strength, dyne/cm -680 2,566 5,05 7.30 8.38
Ratio 911 .9k9  ,926 ,905 879
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Table 4

Parameters for Elastic Calculation of Crack Legsgh

Variable Symbol Units Dimensionless
bubble radius, q
0.2 0.4

Young's modulus E dyne/cm 27.7 37.7
Poisson's ratio v — 0.438 0,50
shear modulus u dyne/cm 9.56 12,6
number of dislocations n=1
Burgers vector A cm 0.06 0.12
surface energy Y dyne 0.051 0.19
applied stress T dyne/cm
crack length a cm

Table 5

Grain Boundary Angles at Point of Fracture

Angles defined in Fig, 1k

Bubble size Fracture strain Angles, degrees

mm 8y eo 91 + eo
.93 .025 25 3 28
.87 .032 32 2 34
.86 .036 15 25 Lo
1.08 .051 32 3 35
1.06 .01k 3 23 26
1.50 .036 3 19 22
1.50 .028 20 5 25
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ATOMIC UNITS

Q | 2 3 4 3
1 I T ]
2L
>
v 4
o
©
i
6
E (totol
8 -
repulsive
10

Fig. lo. BINDING ENERGY FOR COPPER

(o] i i i L
50 52 54 56 S8 60
SEPARATION (ATOMIC UNITS)

Fig.lb. THE REPULSIVE POTENTIALS FOR COPPER AND i8mm
BUBBLES AFTER LOMER (8).

88

Biaxial Tension, Distributed Dislocation Cores, and Fracture in Bubble Rafts

‘sveevevew
seeeePesan
»u&t#to AV
»veovew

R XX X XN XN
#&0‘0000@
IR XXX XX XN

"

® @4 5,, e

. STRAIGHT ATOM-CENTERED

YR AR XXX s
secssassa )N
yo e e U Y
Yeoae e ~
rea v oSe e s e
OO A U
188800
e e NN
COCCEL LU
‘O ®| 5mm | B®

¢. ATOM-CENTERED TRIANGULAR

iﬁﬂmtmwnwvc
‘6‘:&3:0_0,0

1‘}0‘. i Y
’&f COOUUTK
”" .i(.o;“a;v.wvt’

£y i
.75{'?; NN
SIS | 5 mm. | (888

b. INTERSTICE-CENTERED V-TYPE

0esesnss \ /
N O X () I AN

d. INTERSTICE-CENTERED TRIANGULAR

Fig. 2.TYPES OF DISLOCATIONS
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FORCE
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RELATIVE DISPLACEMENT

Fig 3 LINEAR AND NON—-LINEAR PARTS OF THE RELATIVE
DISPLACEMENT.

RELATIVE DISPLACEMENT w/b

Fig4 IDEALIZED RELATION BETWEEN FORCE AND RELATIVE
DISPL ACEMENT.
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Fig.5 PARTIAL BURGERS VECTORS FOR TYPICAL DISPLACEMENTS
{PER UNIT LATTICE SPACING)
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Fig.7 VECTORS FOR "HARDER" FORCE LAW AND IDEALIZED DISLOCATION
w./b=0.10. VECTORS DRAWN DOUBLE SIZE
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Fig. Ba-1 ATOM-CENTERED EDGE DISLOCATION
Fig.6 CHOICE OF REFERENCE LATTICE FOR IDEALIZED DISLOCATION we /b=0.10. VECTORS DRAWN (0x
we/b=0.25, VECTORS DRAWN DOUBLE SIZE
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Fig. 8a-2 ATOM- CENTERED EDGE DISLOCATION
W /b=0.05. VECTORS DRAWN [0x

IS, 0 8

Fig. 8b INTERSTICE- CENTERED V-TYPE DISLOCATION
w./b=0.05. VECTORS DRAWN I0x
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Fig. 8c ATOM-CENTERED TRIANGULAR DISLOCATION
We /b=0.05. VECTOR DRAWN 10x
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Fig. 8d INTERSTICE - CENTERED TRIANGULAR DISLOCATION
We /b=0.05. VECTORS DRAWN 10,
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Fig.12 FRACTURE STRAIN VS. NUMBER OF VACANCIES
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Fig13  sTackinG FAULT SPREADING FROM A VACANCY ARRAY. Fig. 15 STRAIN FOR GRAIN BOUNDARY FRACTURE

Fig. 14.GRAIN BOUNDARY. SHOWS INNER AND OUTER ANGLES
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