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ABSTRACT

The Griffith energy balance for fracture with extensions to in-
elastic materials considers a cracked body as a linear elastic conti-
nuum in which the potential energy released by a crack extension
should balance the surface energy plus the energy dissipated by in-
elastic deformation at the fracture load. With progress in continuum
mechanics analyses of crack tip stress fields for material models
other than purely linear elastic behavior (non-linear elastic, elastic
- plastic, visco - elastic, visco - plastic, etc.) the possibility ari-
ses that deviations from linear elastic behavior may form a predictable
part of the mechanics rather than an effect treatable only by inclusion
of a modified surface energy term. This paper presents an examination
and discussion of the fracture mechanics energy balance from this more
general viewpoint, attempting to seek those conclusions which follow
from theorems and methods of continuum mechanics and broad classifica-
tions of continua, rather than from specific and largely unavailable
inelastic deformation analyses.

A Griffith type fracture criterion is employed in that it is assumed
for crack extension that the work of applied forces must equal the sum
of the strain energy change, kinetic energy change, energy dissipated
by inelastic deformation, and surface energy. All energy variations
except the surface energy are assumed estimated from a continuum so-
lution for an advancing crack satisfying the equations of continuum
mechanics and constitutive relations appropriate to the material, while
the surface energy is assumed independently known from microstructural
considerations. Under this Griffith type assumption it is shown, ir-
respective of the particular constitutive relation employed, that the
fracture criterion is determined solely by local stresses and deforma-
tions near the crack tip (or mathematically, by crack tip singularities
in continuum solutions), and that an overall Griffith energy balance is
equivalent to setting the work done in stress removal from the new crack
surface as estimated by the continuum analysis equal to the independent
work estimate for bond breakage in the form of surface energy. While
all conclusions of the paper tacitly assume the validity of a Griffith
type fracture criterion, the inadequacy of such a criterion for preva-
lent highly ductile fracture mechanisms such as void coalescence by
intense plastic flow (rather than fracture by direct bond separation)
is emphasized.
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Some general results for crack extension in stable linear or non-
linear elastic materials are given, and recent proposals pertaining to
the influence on the fracture criterion of uniform non-singular stress
states, arising in biaxial tension, are shown inappropriate. The influ-
ences of surface energy and hardening behavior in determining fracture
conditions in elastic-plastic materials are discussed, and important
differences of interpretation arise with existing proposals of energy
criteria for brittle-like fracture in ductile materials. In particular,
a consequence of the Griffith type assumption discussed above is that
the surface energy term is of major importance in determining fracture
strength, even though its magnitude is commonly negligible in comparison
to the plastic dissipation. This is because the difference between
potential energy released and plastic energy dissipated in a (hypothe-
tical) crack advance is a function of the applied load level, equal to
the surface energy at fracture. The necessity of including hardening
behavior in a material description is emphasized for situations in
which the Griffith criterion is physically appropriate, for it is proven
that with the perfectly plastic idealization this criterion is never
satisfied in the sense that the energy surplus required for surface
energy cannot be attained. Equivalently, fracture according to the
Griffith type assumption can never occur in perfectly plastic materials.
The roles of surface energy and hardening behavior in fracture of
elastic - plastic materials are further clarified by the analysis of a
highly simplified model for crack extension and by dimensional consider-
ations. At low stress levels inducing plastic behavior on a small
scale compared to cracked body dimensions, the Griffith assumption
leads to a potential energy release at fracture proportional to the
surface energy, the coefficient of proportionality depending on
plastic stress strain relations and generally increasing with decrea-
sing hardening behavior. While such conclusions are consistent with
known environmental influences, it is cautioned that they apply only
when the Griffith bond breakage mechanism adequately reflects the
actual separation process in ductile materials.

INTRODUCTION

The explanation of fracture in terms of an energy balance for
the extension of pre—existing cracks began with the classic work of
Griffith', who obtained a criterion of brittle fracture by equating
the decrease in potential energy of a linearly elastic body, due to
crack extension, to the energy of the newly created surface. The
Griffith theory gave a reasonably good agreement with experimental
results for materials such as glass and, when combined with a statis-
tical flaw theory, successfully explained the great increase in rup-
ture strength of glass whiskers. Fracture in the technologically
important materials is usually accompanied by irreversible plastic and/
or viscous deformation near a crack tip, and one is naturally led to
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consideration of a modified Griffith-type theory which accounts for
this behavior. Such modifications for the case of ductile metals
were considered by Irwin? and Orowan3 who equated the decrease in
elastic potential energy, due to crack extension, to the sum of the
energy of the new surface and the work of plastic dissipation. This
resulted in fracture criteria identical to those of the Griffith
theory, except that now the sum of surface energy and plastic dissi-
pation terms replaced the surface energy term of the Griffith theory.
[rwin? further elaborated his modification of the Griffith theory by
showing that the decrease in potential energy as calculated from the
elastic solutions for cracked bodies (or in his terminology, the
energy release rate) could always be expressed in terms of the elastic
stress intensity factor, which is the coefficient of a characteristic
gingular term, depending on the inverse square root of distance from
the crack tip, in the elastic stress solutionms.

The purpose of the following work is to re-examine the energy
balance and subsequent failure criteria of fracture mechanics. A
general formulation of the Griffith criteria in a form valid for
any continuum is presented, and an examination given of resulting
fracture criteria for elastic and ductile materials, with particular
attention to the role of surface energy and work hardening behavior
in determining conditions of failure for the latter.

ENERGY BALANCE FOR CRACK EXTENSION

A general energy balance for fracture, modeled on the Griffith
theory, is presented here in a form valid for any continuous body
sustaining a crack. No particular assumptions as to the form of
constitutive equations relating stresses and strains are made in
deriving the general results of this and the next section. However,
resulting expressions are derived under the usual assumptions of in-
finitesimal deformations so that geometrical non-linearities are
ignored.

Consider a cracked continuum, as shown in figure 1, loaded by
forces per unit surface area T on the portion of bounding surface A,
forces per unit volume F throughout the region V occupied by the body,
and imposed displacements u on the portion of bounding surface Ay.
Let & and € denote respectively the tensors of stresses and corres-
ponding strains. Referring all quantities to a set of rectangular
cartesian coordinates (xl, X2, X3) and using the subscript notation
with repeated indices implying a summation over the values 1,2, and
3, the following equations are assumed satisfied:

1) equations of motion Qgii + Fy ::Pﬁi throughout V, where the dots
LRS!

denote time derivatives and‘? is the mass demnsity, 2) traction boundary
conditions dijnj = T; on Ap, where M is the unit normal vector drawn
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outward from the region under consideration, 3) strain-displacement relations

uy U
L= 1 (—= o3 d 4) displ t b N )
613 3 (ij + aXi), an ) displacemen oundary conditions that u;

To these must be added a constitu-

tive relation for complete specification of a solution.

Suppose that the crack extends, under constant surface tractions
on Ap and surface displacements on Ay, from an initial state (a) of
figure 1(a), at which fracture is imminent, to a state (b) of figure
1(b) so that the traction free crack surface increases by an amount
A'. The crack is not necessarily assumed stationary in state (a) and
may be propagating with some non-zero velocity with state (a) then
being the configuration of the system at some arbitrary fixed instant.
Letting superscripts a or b on any mechanical quantity denote its
value in the initial or extended states, respectively, the work of
the applied forces in the crack extension is

b a b a
JAT Ti(ui - ui) dA +fv Fl(ul - Ul)dv.

take on prescribed values on Ay.

The sum of the change in
stored elastic energy and the energy dissipated in the material is

() g e % av; ok (b)
Jv{j(a)GEJ éﬁ) ereJ

(a)
the transition from (a) to (b) or more preciselyj

denotes the integral taken over

(b) 4P
fdg =J fgdt,
(a) 2

and the change in kinetic energy is %‘J~ f(ﬁ?ﬁ? - ﬁzﬁj)dv. For
v

fracture, the work of applied forces during crack extension is
equated to the change in stored energy, dissipated energy, change in
kinetic energy, and energy of the newly created surface. It is
assumed that all energy terms, except the surface energy, are adequate-
ly estimated by the above expressions as evaluated through a conti-
nuum mechanics solution for an extending crack. The energy of the
newly created surface is denoted by "A', where ["is the surface
energy. Physical interpretations of [, in terms of the work per
unit area required to separate surfaces, are discussed in the next
section. Ignoring thermal-mechanical coupling (or 1limiting the dis-
cussion to isothermal or adiabatic conditions with appropriate con-
stitutive equations), the energy balance required in the fracture
process becomes

b 8 b o g®
L-T T (o - uhar +fv Py (w? - u®)av
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J { SE:; dijdéij }dV + %Jvf(ﬁ:ﬁ? N ﬁ?ﬁ?)dv +A . (1)
v

The meaning of this energy balance is made clear by transforming
the terms of (1) in accord with the four above conditions satisfied
by the stress and displacement fields. Since Ti = Glgnj on Ar, u?

# ué on AU, and Of?n. 0 on the newly created traction free crack
1 13

surface A'

b b a
J oigy (% - gk (2)
1
AT+AU+A
Applying Green's theorem to transform the above integral on the
- bounding surface AT+AU+A' into an integral on V, and making use of

J‘ T.(u? - u*)aa
AT s S 3 1

equations of motion and strain-displacement relations,

L“T Ti(u}ij = u?)dA = IV a—%— [db(u? - ué)] dv

J i i
=J (00 —e® P - o) - 7l - o)) av
v ijr ij ij i i i ii i

(b)
(][O cpda ) fav - [ ] - ahav )
v (&) ij  ij i i vy 11 i
It will also be convenient to write

(b)
1 b b .a.a i
z jV r(uiui - uiui)dV e JV { j(a)f uidui} av (4)

Substituting (3) and (4) into the energy balance for crack extension 4]
of (1), the fracture criterion becomes h

) L b
L l [u) [ (05 - 0i)aes; + f (4] - i)dn, ]}d" -Iar . (5)

TR

S

Evaluation of the integral appearing in (5) for a particular
material, loading, and geometrical configuration requires a knowledge
of appropriate constitutive relations as well as the solution for
the stress and deformation fields in the presence of a growing crack.
A specific fracture criterion is obtained by dividing (5) by A' and
letting this crack extension approach zero. Ignoring dynamic terms
(that is, settingf =0) one obtains a condition for the load required
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to produce static fracture analagous to that obtained by Griffitht

for a linear elastic material. With dynamic terms included, equation
(5) may be reviewed as a condition relating applied loadings to the
velocity of fracture as in the work of Cragg55 and Gilman® on elastic
materials. Other as yet unexplored possibilities exist, particularly
for rate sensitive materials such as viscoelastic solids, where, with
or without dynamic terms, equation (5) should serve to relate crack
velocity and applied loadings.

Some important conclusions may, however, be deduced directly from
(5) without recourse to particular constitutive equations. These deal
with the actual local nature of the failure criterion based on the over-
all energy balance presented here.

Let V, be any finite volume which completely surrounds the crack
tip region of state (a) and which is chosen so that the newly created
crack surface, A', of state (b) is inside V,, the bounding surface of
V, being labeled A,. When A' is infinitesimal as in the limiting
process required to derive a specific fracture criterion from (5), it
is clear that V, may be chosen arbitrarily small and still satisfy the

required conditions. Equation (5) may be written as
(b)
b b
L’o“(m[(dii - 03 ;)36 + Fu; - “i)d“i]}dv
(b) b 5 |
+ J;_v S(a) [(Olj - G;j)deij + f(ui - ui)du;]} av =["a". (6)
o

Through use of equations of motion, strain displacement relationships,
and Green's theorem, the volume integral over V-V, may be written as

o)
f J (1. —T,)du.}dA :
e T 34

where Tji :Gijnj and n is the unit normal drawn away from the region
V-v,. By boundary conditions the integral over Ap and Ay vanishes
so that (6) becomes, after dividing by A' ,

(b)
1 b b
= Jvo J(a) {(cfij - 0; €+ f - ui)dui] av

1 (b) b

+ (T2 - T.)du, taa = [ (7)

A ) 1 i i
A Y (a

Now consider A' to represent an infinitesimal crack extension

and assume the stress and deformation fields to be non-singular and
continuous everywhere in V except possibly (and probably) at the crack
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tip, and to change continuously with crack size in the transition from
{a) to (b). These conditions may reasonably be expected to be fulfilled
when crack extension is adequately modeled as continuous in the conti-
nuum sense so that sharp wave fronts with accompanying stress disconti-
nuities are not encountered. Since points on A, are at finite distances
b b (oo Eiaill :
from the crack tip, the quantity Ti - Ti = (Oij_ogj)nj is infinitesimal
of order A', and since this is integrated over the also infinitesimal

b ; L
(ui—ui) in (7), the integral over A  is of second order in A' and

disappears as A'>o0. Thus the fracture criterion becomes

lim (b)
1 l b b . .
A'yo A JVO S(a) [(613 - O';J)delJ +f(ui - ui)dui] av _[—,, (8)

where V_ is now any arbitrarily small finite region surrounding the
crack tip. Any terms in the integrant of (8) which are non-singular
at the crack tip make no contribution since V, may be taken as small
as desired and thus, within the framework of continuum mechanics and
assuming the validity of a Griffith type theory, the criterion of
fracture is determined solely by singularities in the continuum stress
and deformation field at the crack tip.

Physically, this means that the Griffith criterion of fracture,
though derived from an overall energy balance, is determined by the
local stresses and deformations in the immediate vicinity of the crack
tip. For conditions of static fracture (dynamic terms omitted from
(8)) this result suggests the validity, under a wide range of conditions,
of Irwin's proposal® that fracture occurs when the crack tip stress
intensity factor, as calculated from linear elasticity, attains a critical
value. Consider a cracked body which behaves in a predominantly linear
elastic fashion except for small regions near the crack tip where response
such as plastic, viscous, or other non-linear behavior is activated by
high stress levels. If the crack size and other geometric dimensions
are sufficiently large so that at fracture dimensions of the non-elastic
zone are small in comparison, one may expect that the linear elastic
field is little disturbed and that the stress and deformation field in
the non-elastic zone is controlled by the stress intensity factor, which
determines the strength of the singularity in the linear elastic solution.
This has been analytically verified for elastic-perfectly plastic
materials?:8,9,1 , although under plane strain conditions the presence
of a uniform stress field acting parallel to the crack line may effect
some minor modifications. When these conditions of small scale non-
elastic behavior are met the elastic stress intensity factor controls
the local stress and deformation, and since the fracture criterion (8)
depends only on local conditions, one expects fracture to occur when
the stress intensity faétor attains a critical value characteristic of
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the material under consideration, temperature of test, plate thickness
in the case of thin sheets, and rate of load application when viscous
behavior is activated. If the Griffith-type criterion presented here
is physically appropriate, the value of the stress intensity factor at
fracture for small scale non-elastic behavior and the fracture criterion
for cases of large scale non-elastic behavior is predictable if the
complete continuum solution for an extending crack is known. In the
absence of such solutions, the stress intensity factor provides a means
for correlating data. For ductile materials one may go a step further
and base fracture criteria on parameters describing local deformations
in elastic-perfectly plastic solutions as in 11,9, O, when such are
available.

PHYSICAL INTERPRETATION OF SURFACE ENERGY

The role of surface energy [' in determining conditions of fracture
from the local stress and deformation field, and also conditions under
which a Griffith formulation is appropriate, are clarified by trans-
forming (5) to an alternate form involving the work of surface tractions.
Using equations of motion, strain-displacement relations, and Green's
theorem to effect the transformation of (5) from a volume integral to
an integral over the bounding surface Ar + Ay + A' of V in state (b),

(b) o
J J (T, —T.)du.}dAzr’A' ; (9)
Aptagrat |7 (a) 5 o B

where T; = G}jnj and n is the unit normal drawn outward from the region
L' Since Ti is constant on A, uj is constant on Ay, and Ti = 0 on

A', the new crack surface being traction free in state (b), this becomes

(b)
_J “ T;duy }dA = Av., (10)
A [/ (a)

Or, in limit form, to obtain a specific fracture criterion,

. (b)
lim 1 j I Tidui}dA =[". (11)
Al

- [ '
Adaord (a)

These equations are, in general, purely formal as the value of the
surface traction T on the new surface A' changes discuntinuously from
a possibly infinite value to zero as the crack advances. As dis-
cussed in the next section, the integral may be given a definite
meaning for elastic materials. However, present and later purposes
are served by the clear symbolic meaning of (10) and (11).

316

An Examination of the Fracture Mechanics Energy Balance

The quantity f

(b)
{ J T.du } dA represents the work done by
Al

(a) i i

surface tractions on A' as the new crack surface is created, and is,
under conditions appropriate for fracture, negative since the surfaces
are pulled apart under opposing stresses. The left side of (10) is
therefore the work done by the new crack surfaces against forces tending
to hold them together. It is reasonable, then, to define the surface
energy term, [, in such a way that [TA' is the same work, but as calcu-
lated by microstructural considerations of the separation of material
surfaces. Depending on the mechanism of fracture, [?so defined may

or may not be identical to the surface energy as commonly defined and
used by Griffith! for fracture in brittle materials such as glass.

On the other hand, for fracture in ductile materials [7 will not be
equal to the plastic dissipation term of the Irwin-Orowan2;3 modifi-
cation, for this term includes also work due to plastic flow at materi-
al points away from the crack surface, where the work is here assumed
estimated by a continuum description with appropriate constitutive
relations,

The two estimates of surface work appearing in (10) are indepen-
dent, and the Griffith criterion predicts fracture when applied loads
are sufficiently great to make the continuum estimate agree with the
microstructural estimate. Ordinarily, an energy balance is not an s
extra condition which may be imposed on a mechanical system, but P
rather a direct consequence of the mechanics involved. The need
for an energy balance (or some other criterion based, for example, on
an average stress or strain near the crack tip) arises because of the
separate mechanical formulations employed, and would not be required
if the convenient formulation via continuum mechanics could be adequate-
ly replaced by microstructural considerations on an atomic or larger
scale depending on the fracture mechanisms involved.

When the fracture mechanism is the brittle type of normal separa-
tion of atomic planes through overcoming cohesive forces, [ is appro-
priately taken as the true surface energy as estimated from atomic
force attraction laws as inb or by direct measurement as in 12, For
this choice of {7, comparisons may be made with other fracture criteria
contemplating similar mechanisms. The approach of Orowan3 considers ;
a crack as a narrow ellipse with a tip radius of curvature of atomic e
dimensions, with fracture occuring when the concentrated stress equals
the theoretical strength. Barenblatt™~’ assumes fracture to occur when
stresses in a small region near the crack tip become too great to
balance a given pattern of cohesive forces acting on the crack surface,
without causing unbounded stresses at the crack tip. The Griffith
criterion, being like those of Orowan and Barenblatt a local criterion,
is based on a combination of stresses and deformations near the crack
tip in the form of energy and is perhaps more appealing on physical
grounds in view of the separate continuum and microstructural approaches
employed by all. In the case of linear elastic materials where a
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complete analysis may be carried out it is not surprising that with
appropriate values chosen for the physical parameters involved, the
criteria of Griffith, Orowan, and Barenblatt lead to essentially
equivalent results.

For the common structural metals, the fracture mechanisms in-
volved no longer necessarily suggest a choice of the surface energy
term, [, as the usual surface energy associated with cohesive forces.
On one extreme, for situations where a high degree of ductile yielding
may occur without serious inhibition by work hardening or stress
triaxiallity (as for example in the final stages of necking and separa-—
tion in a tensile testl4 or thin-foil crack extension tests of low
hardening metals), observations suggest that crack extension is a
result of large plastic flow causing a large void (the crack) to coale-
sce with smaller voids nearby, the latter being either pre-existing
or created by the deformation around inhomogenities. Here the frac-
ture propagation is apparently not due to the presence of high stresses
enabling the overcoming of cohesive forces, but rather appears to be
a purely kinematical consequence of large deformations enabling an
apparent crack extension by the flowing together of voids. One may
define a surface energy term [T by considering the work required to
coalesce a row of voids with the proper mean spacing, and proceede to
obtain a fracture criterion through the energy balance.

However, there are some serious objections to the appropriateness
of a Griffith type formulation under such circumstances of highly
ductile fracture. First the length scale for the fracture process
is on the order of the mean void spacing rather than atomic spacings,
and a large degree of coupling between the mechanism of crack exten-
sion and deformations at points near the crack tip is anticipated.

The Griffith formulation as presented here assumes that such interac-
tion can be neglected, as the independent energy estimates of continuum
and microstructural mechanics are employed. This coupling would
probably leave estimates of elastic energy changes relatively unaffected,
but continuum estimates of the plastic work at points near the crack
would be questionable. Another objection arises because the fracture
mechanism involved is based on the strain required to coalesce voids
rather than on the occurrence of high stresses. The energy balance
criterion of failure seems, however, to be closely allied to a maximum
stress fracture mechanism in the case of elastic-plastic materials.
This is suggested by the agreement mentioned above between energy and
maximum stress criteria for linear elastic solids, although the pro-
portionality between stress and strain does not make this line of
argument especially appealing. A stronger case for the equivalence

of maximum stress and energy criteria is provided by results of sub-
sequent sections on application of the energy balance to elastic-
plastic solids. The general result is that the more strain near the
crack tip is limited by hardening or stress triaxiallity, the lower

the fracture strength. This is precisely the opposite of the result
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anticipated in cases where crack extension occurs by the kinematics of
void coalescence. A more suitable theoretical framework for treatment
of highly ductile fractures is suggested by the work of McClintockl5,

The ductile fractures described above are frequently characterized
by overall plastic deformation in a structure and, in terms of applied
loads, are of the "high stress" type (although the expression is some-
what misleading as a "high stress" fracture in the presence of a small
crack could be a low stress fracture with a longer crack). More
serious from the point of view of their unexpectedness are the "low
stress" type of brittle fractures which may be induced in the usually
ductile structural metals by crack like flaws under conditions when
plastic flow is inhibited by a low temperature, an alloy constitution,
or a mechanical treatment causing increased work hardening and a
raised yield point, or by geometrical constraint causing stress
triaxiallity, or when chemical alterations serve to reduce the forces
required to separate surfaces. The Griffith energy balance here
presented, when combined with an adequate continuum treatment of the
elastic-plastic solid, appears more suitable for this brittle type of
fracture in ordinarily ductile materials, as the objections raised
above to application for highly ductile fracture are no longer appro-
priate. The fact that materials are embrittled by the factors men-
tioned suggests that the occurrence of large stresses near the crack
tip controls failure, and this is, as will be shown, in accord with an
energy approach. Further, although on a microstructural level the
fracture propagation remains discontinuous, interaction between the
mechanism of crack extension and deformation at points near the crack
is expected to be less pronounced as compared to the highly ductile
case, and thus the continuum model of a continuously extending crack
more appropriate for energy estimates near the crack where plastic
flow occurs.

As indicated above, the surface energy term [7 appearing in the
energy balance is appropriately chosen as the work per unit area
required to create new surface. Although presumed estimated from
microstructural considerations, [T may not be chosen independently of
the continuum model employed and reflects to some degree the inade-
quacies of a continuum treatment. As an extreme case, in the Irwin-
Orowan<’” modifications the continuum treatment employs only linear
elasticity, and due to the inadequacies of such a model, the surface
energy term must include, among other things, the total plastic work
done on all the material near the crack tip undergoing plastic deforma-
tion. This type of inadequacy does not enter present considerations
of brittle fracture in elastic-plastic materials, as it is assumed that
plastic deformations near the crack are adequately accounted for by
the continuum treatment so that contributions to [T come entirely from
microstructural features not represented in the continuum model of an
extending crack. The aim, then, of the present formulation, as
amplified in subsequent sections, is to separate the influences of
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macroscopicly observable stress-strain behavior and microscopic
features of material separation. For the relatively rare cases of
pure cleavage in metals, the mode of failure is normal separation by
overcoming cohesive forces and the surface energy term, [7 , of the
present formulation is correctly interpreted as the usual surface
energy associated with a free surface.

More generally, such a direct interpretation of [?is not indi-
cated. Due to the mis-orientations of crystal planes from grain
to grain, misorientations of grain boundaries (if they provide an
easier fracture path), inclusions, and the like, the surface energy
term, [T , must include not only the usual surface energy due to the
ultimate de-cohesion, but also the energy dissipated in inhomo-
geneous plastic sliding occuring prior to separation along non-
favorably oriented portions of the fracture surface. However,
since the same cohesive forces oppose sliding as oppose normal
separation, [' is expected to be of the same order of magnitude as
the usual surface energy, and any chemical or structural alteration
which affects the usual surface energy is expected to similarly
affect the surface energy term, [7 , appropriate for brittle-like
fractures in ductile materials.

Implications of the energy balance as applied to fracture in
elastic and elastic-plastic materials are discussed in the following
sections. It will be seen that the surface energy term, [1 , dis-
cussed above has an equally important role in determining fracture
conditions from elastic-plastic continuum solutions as does the usual
surface energy term employed by Griffith! in connection with an
elastic solution.

STATIC FRACTURE. IN ELASTIC MATERIALS

Conditions determining fracture in elastic materials, as provided
by the energy balance, have been discussed by Rice and Druckerl® in
connection with some general results on the introduction of voids or
slits into a loaded stable elastic material. Results, as specialized
to crack extension, are given here. The postulate of stability as
introduced by Druckerl7s18 defines a class of time independent materials
such that for any stress and deformation states (1) and (2), one has

(2) (1)
5 [O/.. s ] d€.. 20, (12)
(1) 1) 1) 1]

a generalization of the requirement for uniaxial stress that an
increase (decrease) in strain causes a corresponding increase (de-
crease) in stress. For such materials, one may show that crack
extension necessarily involves an energy surplus which is available
for conversion to surface energy. In terms of (5), with dynamic
terms omitted so that
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I J(b) (0.° 5, )a€,  bav =[Ta" (13)
v (a) ij 1.3 i]

this means that the volume integral is non-negative. Since elastic

snterials are reversible, the integration path may be reversed so that

() (a) . |
J (6.1? -0, .)dE. . =J (o —Gi.)déi. which, by (12), is
(a) 1] 1) 1] (b) 1) J J

non-negative for stable elastic materials, proving the desired result.
This result may also be deduced directly from the theo?ew of
minimum potential energy (which is implied by material stability).

w(g) = J-O;jdéij be the strain energy density, the potential
o

energy
= 14
P :J w(€)av - j T,u.dA j F u.dv (14)
v Ap v

takes on, in the equilibrium state, an absolute minimum on the class
of all compatible displacement fields satisfying displacement boundary
conditions on Ay. Comparing with (1) and omitting dynamic terms the
energy balance becomes

Sl L L (15)

with the requirement for an energy surplus being Pbé; P T?e dis-
placement field u? of the initial state (&) clearly is compatible and
satisfies displacement boundary conditions for the extended state (b).
Thus by the minimum principle, since surface tractions on Ap and pody
forces remain unchanged, pb < P& proving again that crack extension
necessarily creates an energy surplus.

Consider two different elastic bodies, labeled (1) and (2), of
the same material with both sustaining cracks, and suppose the loadings
are such that in identical arbitrarily small volumes V, surrounding the

crack tips both have the same initial stress state<Ti§ ::0}?2 = 0}@

before crack extension. Equilibrium then also requires Fi = F% = Fi

in V,. It is shown below that if conditions for fracture are met in
(1), they are also met in (2). This result is closely related to the
local nature of the fracture criterion obtained from the energy balance;
as a special case one has the result that for identical bodies the
fracture criterion is independent of the method of load application
(imposed surface tractions, imposed displacements, or any cowbination)
provided that the same stress state results near the crack tip for

all methods of loading, as proven for linear elastic materials by

321




J.R. Rice

Irwinlg, Buecknerzo, and Sanders2l.
Dropping dynamic terms from (8), it is clear that both bodies
(1) and (2) simultaneously meet fracture conditions if the difference

(b1) bl

" “’2)( b2 o
Ar)= 0.°° _d..)d€. . -
(an) fvo g(a) ij ij)d€5 J(a) (O’ij _o’ij)deij av  (16)

is of second order in an infinitesimal crack extension A', since then
the 1imit of (8) is identical for both. Here the notations (bl) and
(b2) denote the respective states after crack extension A'. Assuning
a8 strain energy function exists so that the integrals are path in-
dependent, (16) may be put in the form

(b2) b2
b2 bl bl a
A(a)= (0.7 -0, . )€, -€)+ (0. -0..)a€e .\ av.
S 1] 1] 1] 1] (b1) 1] 1] 1]
(17)
Considering only stress paths satisfying T, = O on A' in the inner
integral, an application of Green's theorem leads to
(v2)
b2 _bl,, bl
A(A'):[ { (T22-150) (uy —u?)+j (T?Z-T_)du.}dA, (18)
A, (b1) 24

where A, is the bounding surface of V_, Tj = O;jn‘ with n the outward
j n

normal from V,, and where the usual terms containing body forces
cancel. The term T represents any set of surface tractions on A
which pass from those of state (bl) to (b2) while remaining in ¢
equilibrium with body forces F; in V,. Such a set may clearly be
chosen with T; between bl and T?Z at every point of A,. Since
points on A, are at finite distances from the crack tip, continuity
of the solution then requires that all terms in (18), and thus A(A'),
be of second order in A', so that if the fracture criterion of
equation (8) is satisfied for one body, it is also satisfied for the
other.

When the material is li?e?rly elastic, the existence of a strain
b

(a)

éiz), Thus the fracture criterion of (8) and (11) becomes

energy function results in J

gb_ Y e ey
(0,7 - 0, = + (0,7 -0, (€] -

Lim 1J (P - o2)€P - € Yyav
v IS S RS & R

Ao 2A' i
o
lim 1 a b
= — A0 24" j Tiugda =7 (19)

Al
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The latter form of (19) is the equation used by Irwin4 to express
the energy release rate as a gquadratic function of elastic stress
intensity factors for the opening, sliding, and warping modes of
crack extension, thus verifying his result.

Equation (19) may be used to evaluate recent conclusions by
Swedlowzz, recorded also by Berry23, that a uniform stress field
acting paralled to a straight crack, and inducing no stress singu-
larity, may influence the results of an energy balance. Consider-
ing a crack of length £ under plane strain conditions subjected to
stresses Sx imposed parallel and S,, imposed perpendicular to the crack
line, as in figure 2, it is reportedz3 that when the plane is in-
finite an energy balance based on linear elasticity leads to (L /32G)

48; - (1-4V) sty} =[7, where G and )) are the shear modulus and

Poisson ratio. The inappropriateness of this result is readily
shown. The energy balance when transformed to (19) involves only
the stress and strain differences (0;? - O}?) and ( éig - Giz) due
to an increment of crack extension. For a"linear material, super-
position indicates that these differences are the sum of differences
induced separately by the loadings Sy and Sy. But Sy induces uniform
stress and strain fields which are unaffected by crack extension, so
that the contribution of Sy to (G'i‘? -0%) and ((:i‘? - €;2) is zero,
and the result of an energy balance is independent of parallel stress
Sys in conflict with 22,

Alternately it was shown earlier that, as a direct result of
the minimum potential energy principle, crack extension necessarily
makes the potential energy difference (P% - Pb) non-negative.
Comparing (15) in limit form, X{To %T (P - Pb)r=[7, with the result
0£22 as given above, it is seen possible to choose Sy so that the term
corresponding to the potential energy difference is made negative.
Thus the validity of the cited result of 22 would be a contradiction
of the minimum potential energy principle, the latter being a well
known direct consequence of the equations of linear elasticity.

STATIC FRACTURE IN ELASTIC-PLASTIC MATERIALS

Under conditions accompanying brittle fracture in ordinarily
ductile elastic-plastic materials, the energy balance, with proper
interpretation of the surface energy term and a reasonably descriptive
continuum solution, may be expected to provide a criterion for crack
extension. General results equivalent to those cited for elastic
materials have not been obtained, as the proofs depend on the existence
of a strain energy function. However, some interesting results on the
role of surface energy, [' , and the necessity of work hardening be-
havior in a continuum description are indicated.

It will be convenient for purposes of clarity to write the energy
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balance of (1) in terms of the familiar energy release rate as intro-
duced by Irwin2:4, Consider a straight, through the thickness crack
in an elastic-plastic plane as in figures 3 (a) and (b) under conditions
inducing a stress state depending only on x7 = x and x3 = y, and base
all calculations on a unit thickness in the x3 = z direction. Then Af
= A'/2 of figure 3 is the increment of crack length (A' being the area
of both sides of newly created surface). _Strain increments may be
split into a recoverable elastic part deij and a permanent plastic

p R e
?art déi_, with déi. = déi. + dé,? . The energy release rate, } , as
introduddd by Irwindis theJnegat}Je of the rate of change of potential

e
n P = - i i
energy, j;{}jijdeij de ~IV FiuidV ng TiuidA’ with respect to

grack length, V being the volume of a unit thickness of figure 3.
hus

; (b)
4= 1 I_U b e JaE I P, (uP - ?)dv-J j e}
Ao X A iti i * v 1 YTy v (a)dijdéij i

(20)

AlpL?_tio dissipation rate, ; , is defined as the energy irreversibly
dissipated by plastic flow during a unit crack extension, as given by
the continuum solution.  Thus

) (b)
_ lim 1 ]‘ g P
P =afso ﬂ;v& () L B (21)
Comparing (20) and (21) to (1) with dynamic terms omitted and noting
that AL = A'/2, the energy balance takes the familiar form

H=p+2[, (22)

The interpretation of terms on the right is somewhat different
from similar equations 2,3,4, In these works, [! was interpreted as
the usual surface energy and p the total plastic work rate; here [7
represents a modified surface energy as indicated earlier and p the
plastic work rate estimated from continuum considerations. Since
the same transformations of the energy balance leading to the forms
of (8) and (11) are valid here, one has

; (b)
_ lim 1 b
Horas MIv“(a) 95 - 8o |

lim 1 (b)
T —ﬂ A'U(a) Tidui} dA (23)

It is important to note that the quantities ¥ and p, as calculated
from (20) and (21), are obtained directly from an appropriate solution
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for an extending crack and depend only on the applied loads. In
particular, the plastic dissipation rate is, prior to insertion in

a fracture criterion, not a material constant as seems to be commonly
assumed, but rather the result of a calculation that may be carried out
quite independently of the question as to whether the material under
consideration actually will fracture at the given applied loads.
Assuming all applied loads in figure 3 proportional to some loading
parameter Q, this dependence of the energy rates on applied loads

is indicated by2i:=2ﬂQ) and p = p(Q). The fracture criterion (22)
then becomes the implicit equation for the value of the loading para-
meter at fracture

Mo, - p(Q,) = 2I, (24)

with Q = Qp at fracture. This equation is depicted in figure 4,

where (0Q) is shown by the solid line and p(Q) by the dashed line.

For a perfectly elastic material p(Q) = 0 (no plastic dissipation); for
an elastic-perfectly plastic material (no work hardening) it is shown
later that if stresses vary continuously during crack extension one has
p(Q) =H(Q) for all Q so that the point of fracture is never attained
(that is, all the released potential energy is dissipated plasticly,
regardless of the applied load level). The difference Y - p in figure
3 is shown as an increasing function of Q, and this turns out to be the
case for the simple model analyzed in the next section. More
generally, consider the last form of equation (23) for 4 -p. As the
loading parameter Q is increased one expects both the surface tractions
T? initially acting on A' and the displacements u?, through which they
are relaxed in the process of creating new surface, to also increase,
suggesting that the negative of work done in removing these tractions
and thus, by (23),4 - p are increasing functions of Q.

The essential point which emerges, as a necessary consequence of
the Griffith theory applied in conjunction with continuum estimates of
energies involved in Y and p, is that the value of the load at fracture
is determined by the surface energy with plasticity acting only to
alter the functional dependence of - p on applied loads. Dimensional
considerations of a later section lead, in the case of small scale
plastic behavior, to a quantitative estimate of the manner in which
fracture strength depends on surface energy. Such a dependence
seems not fully appreciated in previous work )3 where, since 27 is
generally negligible in comparison to the value of p at fracture,
the fracture criterion is written as H(Q) = pp, with pp considered as
a constant characteristic of the plastic dissipation rate at fracture.
Surface energy is negligible in this additive sense, but as indicated
by figure 3, the value pp of the function p(Q), at fracture, is essen-
tially determined by [’ . Further, for cases where plastic yielding
is on a large scale in comparison to geometric dimensions, the func-

tional dependence of p(Q) on Q may be appreciably altered and con-
sequently the value of pp 1S not expected to be a fixed material
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property.

The influence of chemical attack on the i
metals has been indicated in24,25; in generalmgzigniizlmZ:;:2§:ZlOf
stress—deformation properties and surface energy are altered Ther
are, however, situations in which the time of chemical expos&re is E
suff%c%ently short so that volume diffusion into the material is
negllglble and stress-deformation properties are essentially unchanged
Thls may occur in experiments24 where specimens are fractured imme-—g
diately after surface wetting, and the embrittling agent reaches
material to be fractured by following the newly created crack surfac
When stress-deformation properties are unaltered, the functional °
dependence of Y- p on Q remains as in the virgin material and pre-
sumably only the surface energy, [ , is decreased by the embrittlin
agent present near the crack tip. The geometrical picture of fi ufe
4 then predicts the observed decrease in fracture strength of roughl
the same order of magnitude. If a critical plastic dissipation fatz
controlled fracture, no decrease in strength would be noted in such
situations.

It is now shown that if stresses change continuously during
crack extension everywhere in V except at the crack tip, an elastic-
perfectly plastic material carrying bounded stresses re;ults in =
p for all levels of applied load, so that crack extension involves_no
energy surplus and fracture, according to the Griffith theory, cannot
occur. 'This result, though not obvious in the presence of p;ssible
strain singularities at the crack tip, suggests the Griffith criterion
of fracture to be associated with failure through the production of

.

high local stresses. Splitting strain increments into elastic (re-
coverable) and plastic parts, (23) for H - p becomes
lim 1 (b)) % (b)
H-p-= L j (0, 0-07.)a€ © - :
e =07 )A€+ (0;.-0.)d€,~ hav
ool Jy | )iy 07" g TR G 2

w?;re, :E in dfriving (8), continuity everywhere but at the crack tip
allows e replacement of V b n i i ini
ki Y tie s ol y any arbitrarily small finite volume \US
Following the continuum theories of perfect plasticity, a fixed
convex yield surface in stress space is assumed such that i% plastic
flow occurs, J is on the yield surface and the plastic strain incre-
ment, ngf has the direction of an outward drawn normal as in figure
5 Consider the term ( ng - G},)dé.P , which represents the scaler
product of the nine component vectgrs 5b -0) and d€P in figure 5
If the stress state § does not cause pIasth flow, Eép =0 fnd thé
term vanishes. If O does cause plastic flow, it is on the yield
surface. But for a perfectly plastic material the stress state 9P
resulting at a material point after crack extension is either in;;de
or on the yield surface. Thus the convexity of the yield surface
and normality of the plastic strain increment necessarily implies
that the scaler product of (P -O) and d€P is non-positive, so that
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(@.° =,
1]

P& 26
at every point of the material. Alternately, (26) may be taken as
a fundamental definition of a class of materials, as by Druckerl7 in
his stability postulate, with convexity and normality resulting. With
(26), an upper bound for X - p results by retaining the first integral

of (25), so that

. (b)
Lim. 1. b _ e
HM-P < a30 a7 Vis(a) (O’ij LR (27)

When the elastic response of the material is linear, Hooke's law
relates éf to g and, if the assumed form admits a strain energy

function

(b)
(6.1? -0, .)dé.? =1 (0., —O’.%)(E".at? -é?a.') whereEEb and ge“ are
(a) 1] 1] 1] 1] 1) 1] 1]

the elastic strains induced by the stresses Q_'b and ,Q:a . The upper
bound of (27) for Y - p becomes

lim 1 b a eb ea
ﬁ-ps%,ﬂ,oa{v (0,3 -0, (€ ;- €547 . (28)
o

It is now shown that when stresses are bounded everywhere in V and change
continuously with crack length everywhere except possibly at the crack
tip, the upper bound of (28) is zero. '

Take V, to be the square of side length s and of unit thickness
in the z direction, centered at the crack tip of the initial state (a)

as in figure 6. The integral over V, of (28) is
f+5/2
(

J +s/2 {

-s/2 | /1-s/2
Considering the inner integral in x first, curves in figure 5 show the

variation of a stress component C,. with x for y = 0 (the crack line),
where a bounded discontinuity at t crack tip may occur, and for some

non-zero value of y. Since corresponding elastic strain components,

€ .2 , are related to stresses by Hooke's law, they have similar varia-

tiofs with x . Continuity then requires that both the stress diffe-
rences (O'it? —Gi@) and elastic strain differences (égt.’ —6‘;‘?) be of
order Af (writtenaas OLALJ ) for y # 0 and for y =0 except in the dis-
continuity region £ < x £ 1_5 AQ . Thus for y # O the bracketed in-
tegral in x above is o[( at) ]. For y = O the bounded discontinuity
gives 0 [A2] for the integral in x, and integrating over the height s
in y results in (gb _ge)(€eb -€%)av £ s 0[af]) . The in-
v 1] 1] 1] 1]

a
ij ij ij

gL g% e -eﬁ‘;)ax}dy )

[o}
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. . 1i
equality of (28) then results ind - p £} A;;no 413_2{ sO[Aﬂ]} =s o0[1] .

§Ut since Vo, and therefore s, may be chosen arbitrarily small, this
ecomes 4 - p £ 0. Since Y - p is non-negative, one has & - p = 0
o ’

or
A=» (29)

under the stated assumptions for a perfectly plastic material at all
load levels, and the necessary surplus required for surface ener i
the fracture criterion Y = p + 2[7 is never attained. =

This result depends strongly on the assumption that stresses
change continuously during crack extension; the assumption may be vio-
lated by a finite line sustaining a stress discontinuity and propagati
through the material as the crack extends. Available solutions fgr o
stationary cracks7:10,26 jindicate the absence of discontinuities, as
d?es the published solution27,8 for an extending crack under 1onéitu—
dinal shear. One may, in fact, verify through detailed calculation
that for the latter solution one has X = p at all load levels How-
ever, this solution, while perhaps adequate for the purposes ;fg is
not exect since by using the stress field appropriate for a stationar
crack'ln the case of a moving crack, the plastic work turns out to bey
negative at some points of the cracked body. The presence or absence
of prop;fating discontinuities, and thus the general validity of the
result = p, is thus not completely settled.

As§uming the generality of (29), it appears that if a continuum
theory is to predict fracture through the Griffith criterion it is
necessary to have a stress singularity, or infinite recoverable elastic
energy density, at the crack tip for conversion to surface energy, in
%greemgnt with the notion that fracture through the Griffith mech;nism
is equivalent to the building up of sufficiently high crack tip stresses
to ove?come cohesive forces. This does not indicate that non-work
ha?denlng perfect plasticity solutions are without usefulness in situ-
ations of brittle fracture. While apparently not being capable of
producing an absolute prediction of fracture strength, they do presum-
Zbiy 1914 to reasonably accurate estimates of how local crack tip

eformations depend on applied loadin i
actual lightly hardeningpgaterials. 4 A% epmetiiant panengtens for

Aside from indicating the predictive inadequac
plasficity model, the above result confirms tha% asyogz ;::szzrf£§:u h
varying degrees of hardening behavior from the perfect elasticity tog
the perfect plasticity limiting cases, the difference & - p passes from
Y to zero, as indicated in connection with figure 4.
of m9derate hardening one is justified in expecting, on the basis of
continuum estimates of plastic work, that the observed large values of
the energy release rate at fracture, in comparison to results of an
elastic analysis, are predictable.

It is of some interest to note that the coincidence of a maximum
stress criterion and an energy criterion is more a consequence of the
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sinstic-plastic model than a general result of the energy balance.
fonsider a material which is capable of carrying only finite stresses
irregardless of the accompanying strains. If the material is per-

~ fectly plastic, no energy surplus for fracture is available. On the
sther hand, if the material is non-linear elastic, a result of the
previous section is that crack extension is accompanied by a non-posi-
~ tive change in potential energy. One may easily justify that if
 stresses change at all during the crack advance (as they must to
satisfy boundary conditions if non-zero stresses are transmitted across
the new surface before separation), the potential energy change is
non-zero and an energy surplus is available for fracture. Thus the
sommon feature for different types of materials appears to be more a
requirement of an infinite recoverable energy density at the crack

tip than an infinite stress, although for elastic-plastic materials

these coincide.
ENERGY RATE ANALYSIS OF A SIMPLIFIED MODEL

In the absence of appropriate solutions for an extending crack
in a work-hardening elastic-plastic material, it is presently not
possible to predict fracture strengths from the energy balance( in
cases where it is applicable). The situation is to some extent
clarified by the analysis of the simplified elastic-plastic model for
an extending crack presented here. The model is in no sense quanti-
tatively predictive of the behavior of resl materials, and many of the
_important features of plastic deformation are absent. However, the
model does serve to reflect, in a concrete example, the general results
presented earlier, and is physically suggestive of the role of surface
energy and work-hardening behavior in determining fracture conditions
for ductile materials.

Consider two elastic planes subjected to in-plane loadings and
joined together along a strip of elastic-plastic material of height h
as in figure 7. For simplicity, the strip material is assumed one-
dimensional in that it resists extemsion or contraction only in the y
direction (parallel to the direction of applied loadings). No resis-
tance is offered to extension or contraction in the x and z directions
so that 0y =0, = 0 in the strip; similarly, no resistance to shear
deformation is offered so that all shear stresses vanish in the strip.
Figure 8(a) shows a crack of length £ in the strip and 8(b) the same
crack after extension by an amount Al , states (a) and (b) corres-
ponding to the initial and extended crack states, respectively, of
previous sections. Through the properties of the strip, the cracked
material is stress free and strip displacements are discontinuous at
the crack tip.

A typical stress-strain relation for the strip material is shown
by the curves labeled "loading" and "unloading" in figure 9. The
static fracture criterion is
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to separately assess the elastic and plastic deformations during
crack extension and to write explicit formulae for 4 and p, as the
fracture criterion requires only that their difference M - p be
known. From (23), as specialized to the present case,

. (b)
lim 1
A-P=-a507% A,U(a) Tidui}dA

lim 1 x=L+alf (b) (top) (bottom)
:4£->0A7.J 5 Cry d[u =2 J ax

x=2 (a) y 4
) I (b) . d[u(top) 5 u(bottom)J}
(a) ¥ Y y crack tip , (29)'

where T = (0, -0, 0) on the top side of the new crack surface, T =

(0,0, 0) on bottom side, and the displacement difference arises
since’the integral on A' is to be carried out on both sides of the
newly created surface. The fina. form of (29)' is to be taken at the
crack tip. In state (a), [11 top) _ y(bottom ﬁ = 0. Since displace-

ments are continuous in the elastic planes, the only non-infinitesi-
mal displacement differences arise from contraction of the strip
material after fracture and, where & is the strain in the strip
material at the crack tip during the’ transition from (a) to (b),

(u\(rtop) > u(bottom)] = h(e; - Ey). Thus the difference between the

energy release and plastic dissipation rates is, for a material which
unloads in a linear elastic fashion as in figure 9,

Q
[T}
i
1]
N

ho? (€2 -¢P) (30)
(a.) y Yy b, 4 Yy 3

H-p=-h

whereo’; is the stress at the crack tip before extension, a.ndé-; and

éb represent respectively the strains in the strip material before

and after extension. Equation (30) may also be derived directly from
the alternate form of (23) in terms of the volume integral. Inter-
preting geometrically through the stress-deformation curves of figure
9, Y - p = hx[ shaded area of figure 9] =h $02(€2 -€P) , vhich is
h times the energy per unit volume recovered by an unloa(}iring from the
stress levelG 2

Comparing the fracture criterion = p + 27 with (30), the
Griffith formulation predicts fracture in the present case when

ﬁd;(e;-é§)=2f, (31)

or, in terms of figure 9, when the stressO> at the crack tip is

sufficiently high to make the shaded area e%{ual 2"/h or, alternately
stated, when the stress O'; is great enough to make the recoverable
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elastic energy balance the surface energy. One may estimate the
plastic dissipation rate for the strip model. Supposing the region
of the strip undergoing plastic deformation extends from x = £ to x =
{ +w in figure 8, W being the length of the plastic zone,

£ +w P
P = hjﬂ o’yaa—;l ax (32)

is the plastic dissipation rate, with Oly and6§ being the stress and
plastic strain in the strip. Consider now cases for which&P is a

function only of x — £ (the distance from the crack tip) and is other-—
wise independent of L. This is usually a good spproximation to the
actual case as the variation with crack length of plastic strain at
4 point some fixed distance ahead of the crack is generally negligible
in comparison to the variation with distance from the crack tip. In

such cases aéi = _3_€£ and (32) results in
dx oL

e
|

Bép x=£
O/ ﬁ dx = hJ 6y dep
L+w Y x=f+w y

]

(a) "
h o d€et (33)
¥y Yy
o

since in going from the outer edge (x ={+w) of the plastic zone to
the crack tip (x =£ ), the p}%itic strain varies from zero to that of
state (a). The integral < o’y deP is the total irreversible plastic

- work per unit volume done on the strip material in bringing it to the

stress 0% at the crack tip, and is simply the unshaded area between the

"loading" and "unloading" curves of figure 9. Thus, geometrically,

p = h x [unshaded area of figure 9). The ratio of f - p to p is then
the ratio of the shaded area to the unshaded area of figure 9, so that
in cases where appreciable plastic deformation is required to build up
sufficient recoverable elastic energy to meet the fracture criterion

Y - p=2[", the value of the plastic dissipation rate, p, at fracture
is expected to considerably exceed the surface energy, 2", in accord
with observed results for metals. However, the surface energy deter-
mines the value of applied loads at fracture, with plasticity properties
serving to determine the functional relation between applied load and
recoverable elastic energy.

A qualitative explanation for the influence of work-hardening on
fracture strength results by comparing, as in figure 10, failure
criteria for strip materials with the same elastic constants but
different degrees of hardening. The same crack tip stress,da, is

seen to be required for fracture in all cases, but the required strain,
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a ;

€ y increases with decreasing work-hardening. When the plastic
region is sufficiently confined by elastic material surrounding the
cra?k tip, elastic constraint causes the applied load at fractﬁre
to increase with crack tip strain required at fracture and, with all
?ther material properties held constant, the applied load ;t fracture
is seen to increase with decreasing work-hardening. Alternatel in
terms of energy rates, the potential energy release rate, i isy;x—
pected to be essentially unaltered in its dependence on ;pplied load
when the yielded region is small and confined by elastic material
But the plastic dissipation rate corresponding to the required re;
coverable energy surplus for surface energy, and thus the applied
load at fracture, increases with decreasing work-hardening.

és pictured in figure 10, when the strip is elastic-perfectl
plastic it cannot fracture according to the Griffith criterion uiless
f?acture conditions are met for a crack tip stress at or below’the
ylgld point. Here one does not have 4 - p = 0, but rather that 4 -
p is no greater than the recoverable elastic energy corresponding to
the yield stress. This is not contradictory with the result ofgthe
last s?ction since the assumption of stress continuity during crack
ext?nslon is not satisfied due to the discontinuity over the finite
strip height h. When the strig material is rigid-plastic the model
corresponds to that studied in28,29, Since no energy is reco . -
able, one has 4 = p at all load levels, in disagreement with the v
analysis 0f29 where it was erroneously assumed that the potential
energy rglease rate was unaffected by plastic deformation. It is
of s?me interest to note that when the strip material is assumed to
be linear elastic, a fracture criterion identical to that of Griffith
ex?ept for an undetermined numerical factor, results when the stri ,
height, h, is negligible in comparison to geometrical dimensions og the
cracked body. This may be shown by a mathematical formulation, not
reproquced here, of the appropriate boundary value problem for ;he
elastic strip analog of the infinite plane with a crack of length,ﬂ
und?r a uniform tensile stress, O . The problem may be reduced to
a linear integral equation for the stress 6. in the strip. By
letting ¢/h?win such a way that Jh/f GlAyyis bounded and basing

the length scale on h, the linearit i

‘ y assures that crack tip stress
a

varies as 02 = (const.)0f{/n . Elasticity of the strip requires

b .
that Ey = 0 after crack extension, and with€é?2 =J2/E as appropriate
y y

for plane stress, the fracture critegion (31) becomes

g%

1 a a b
3 hdy (ey —éy) = (const.) T - 27, (34)

in essential agreement with Griffith except for the constant which
may be determined only by a complete solution. Thus the strip model
leads to correct results in the two limiting material idealizations of
perfect elasticity and perfect plasticity. In general, however
results should be expected strongly dependent on the ar;ificiall;
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saterials are at best qualitative.
¢5r the elastic strip is equivalent to obtaining a solution which
saymptotically approaches
dominated by the crack tip singularity;
shown valid for sm

for a work-hardening elastic

_ fracture.
and loaded with a uniform tensile stress, O, so as to induce plane
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ed strip height so that predictions for work-hardening
The technique described above

the form of the elastic crack solution as
a similar technique has been

all scale yielding of a plastic materiallO.

DIMENSIONAL ANALYSIS

The mode of dependence of fracture strength on surface energy
-plastic material may be predicted
ions in cases where the yielded zone

etric dimensions at the point of
k of length/

through dimensional considerat

is small in comparison to geom
Consider an infinite plane sustaining a crac

For an isotropic material, elastic strain in-
crements d€€ are related to stress increments 46 by the usual form

of Hooke's law involving Young's modulus E and Poisson's ratio Y
O for plastic strain increments d€P under the
£ a stablel7;18 material is given

strain conditions.

An appropriate form>

assumption of isotropic hardening o 5

in terms of loading function f = £(9) of the three stress invariants, i

with £(g) =T° (T = initial yield stress) the initial yield surface in -
subsequent yield surfaces determined by the largest

d during the course of previous plastic straining.

y for stresses

stress space? an8
value of f(Q) attaine
Components of plastic strain increment are non-zero onl

on the current yield surface with stress increments that increase f,

in which case

P _ of
déij =A(£) as,ij ar , (35)

with/A(f) being the isotropic hardening function. Since dgp is

dimensionless and f is a function of stresses, it is clear that any
material constants appearing in A and f may always be expressed in
units of stress, so that (35) introduces a set of constants T&, T,

., T with stress dimensions.
n

A - p of (23) as obtained from a continuum

The expression for
..,jjn, with the

solution may at most depend on o, ,Q , E, v, To Tl
fracture criterion (22) introducing the additional variable [ . The

fracture criterion is, however, local in nature. It is well known

that for elastic materials, local stresses and deformations depend on

applied loads and geometry only through the stress intensity factor K, 5
with K = O"NZ/Z in the Sresent case?. For perfectly plastic materials,

it has been shown in738,95,10 that when the yielded zone is small in

comparison to geometric dimensions (or alternately, when O is small in

comparison to the limit load), local stresses and deformations remain

determined by the stress intensity factor of an elastic solution.

Thus one may generally expect in cases of small scale yielding that

the local conditions determining H - p depend on G and f only
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tyroug§ the combination K =0 J T /2 .  For such cases the independent
dimensionless combinations of relevant variables are K/‘/ E[7= o/me/2E
L

To T1 Tn
/E, /E, ..., "/E, YV, so that a i
Ny s plane strain fract i i
(assuming & — p # 0) takes the form R e

. cr./?Lfg.:rErvg’%,%l-,...T—n,w. (35)'

" E

For comparison, the criterion obtained for i i
r cc elastic materials b
Griffith! and generalized by Irwin2 is °

R o)

The mode of dependence of fracture strength on surface energy for
small scale yielding is then identical to the dependence in&icated
for elastic materials. In such cases it is reasonable to estimate
the potential energy release rate by the linear elastic formula? Y =

2y 2 £
(1 -Y“°)K=/E, so that (35) leads to a fracture criterion in the form

o= 2re®m, s, LT, (37)
indicating that at fracture the energy release rate is directly pro-
portiogal to the surface energy term as multiplied by some function f
depending on material constants describing the elastic-plastic behavior
For linear elastic materials f is unity; previous considerations sugges£
that as one considers various types of behavior from high to light work-
hardening, f increases greatly from unity, approaching infinity in the
perfectly plastic case. )
o It has recently come to the author's attention that expressions
1nd1catin§ a similar dependence on surface energy have been proposed
by Gilman 1 and Westwood and Kamdar32, based on considerations of
Tastﬁnlly relaxed stress fields near cracks. The latter work leads
o estimates of environmental embri i
to estimates of environ ittlement based on alterations of [’

The nature of plastic deformation suggests that the functional
forms appearing in (35)'and (37) are not unique, but rather dependent
on the way stresses acting before crack extension were reached Thus
the criterion for the first increment of crack extension after.loadin
from a virgin state may differ from the criterion for a subsequent %
increment, since the method of plastic straining involves prior crack
extension as well as changes in applied load. Such considerations
although based on a strain criterion instead of an energy balance héve
ledll to an explanation of slow crack growth prior to catastrophi;
fracture.

In general, dimensional considerations require the introduction
of.a m;terial property with dimensions of length to obtain a fracture
criterion, as crack length is the only parameter entering a continuum
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suialysis without stress dimensions. This is provided by the ratio

{*¥£ in the Griffith type theory discussed here. For situations in-
¢plving a kinematical mechanism of void coalescence by plastic flow,

4 wmean void diameter might provide the required length dimension®’.

It appears33 that dimensional analyses of crack extension rates under
vepeated loadings (fatigue) may be brought into accord with experimental
data by including among relevant variables such a characteristic length
associated with fracture.

Williams3? discusses the application of a Griffith-type energy
balance to fraciure in visco-elastic materials in another paper
presented at this conference. It is of interest to note that, similar
to present conclusions for elastic - plastic materials, he finds sur-
face energy to essentially determine fracture strength, even though it
is normally small compared to viscous dissipation, when the appropriate-—

ness of a Griffith approach is assumed.
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