A-3 A Heuristic Approach to the Theory of Fatigue
Fracture as Dual to Yielding

Sitiro Minagawa®

Following on from Prof. Kondo's lecture, we intend to give a more
detailed explanation of the theory of stress space and its application
to the construction of a theory of fatigue fracture. This investiga-
tion was started under the guidance of Prof. Kondo and has been carried
out as*gart of his general scheme for a non-Riemannian Plasticity
theory™ ™.

1. Stress space (7,8,9,10)

The theory of stress space was started by H.Schaefer (11), who
introduced a Riemannian space which has the stregs functions of three
dimensions as the components of the metric tensor, and indicated that
the Riemann-Christoffel curvature tensor of the given space is comparable
with the stress tensor of the body, although an earlier suggestion of
it appeared when E.Beltrami (12) found that the relation between the
stress functions and the stress is equivalent in form to the relation
between the strains and the incompatibility.

In the geometrical method of approach, we have hitherto used, a
Riemannian space having the strains as the components of the metric
tensor has been taken into consideration. In the new method of approach,
the stress functions of three dimensions are used instead of the strains.
Below is a table showing the geometrical terms of the space and the

strain space stress space
metric tensor strain stress function
incompatibility

R.-C. tensor stress

dislocation pair

moment -stress

torsion tenso i i
FRAOL LEmgOy dislocation dual dislocation

*) Associate Professor, Institute for Strength and Fracture of Materials,
Tohoku University, Sendai, JAPAN

**)Details of this subject can be found in, e.gey (1,2,3), as well as

in the paper by Prof. Kondo immediately preceding the present one (4.
Investigations in the elsewhere should be referred to, e.g., (5,6).
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physical terms connected with deformation and stress. If we refer the
strain tensor to the metric tensor of the space, the Riemann-Christoffel
curvature tensor may be compared with the incompatibility. In this
case the space is called 'the strain space''. On the contrary, if we
refer the stress functions to the components of the metric tensor, the
Riemann-Christoffel curvature tensor of the space reduces to the stress
tensor of the body. Such a space we call 'the stress-function space'',
or, simply, '"the stress space'.

We can, further, obtain a general non-Riemannian stress space by
referring Cosserat's moment-stress to the torsion tensor of the space.
Such a generalization has been made by R.Stojanovitch (13), S.Amari
and K.Kagekawa (14), and by others®.

Bianchi's first and second identities are of such forms

b a5 ad s I,

v[mzlk]j =2 T[ml zk]nj (1.1)
and
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(k3] = 2 "% [k Tilm (1.2)
where Eig&l and T&&l are the Riemann-Christoffel curvature tensor
*

and the torsion tensor of the space, and Vi means the absolute deri-

vative. Neglecting the terms of higher order, they reduce to
i3
2,2 J-o, (1.3)

and

- eelll m
z[kj] = am ( Tkj + 2 a[k Tj] ), (1.4)

respectively, where 62 is the Kronne: cor delta, and

s
T, = Tji . (1:5)

AR L I % ¥ g, (1.6)

ij ij ; L
the I J, Z and Y J being the Ricci tensor, the scalar curvature and
the contravariant component of the fundamental metric tensor of the
space, respectively. i
Therefore, if we refer ZlJ to the stress tensor of the body,
and

*) Dr. Amari will himself give details of Amari-Kagekawa's theory in
the lecture following the present one. Now we shall develope the
explanation along the line of calculation extracted from (15). In (10)
we have also developed the theory along a similar line of thought.
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Miim = Tﬁﬁm + 2 a[i 7.1 (1.7)

to Cosserat's moment (or torque-) stress, equations (1.3) and (1.4)
are comparable with the fundamental equations of the Cosserat continuum.
Therefore, the correspondence such as summalized on the table can be

*
made .

2. Fatigue fracture as dual yielding (15, 16, 17)

As can be seen from the table, there is a dual correspondence
between the stress space and the strain space. That is, the one is
derived from the other by the substitution respectively of the stress
function and the stress for the strain and the incompatibility, and
vice versa. By such a substitution, the formulas which include the
terms connected with the stress space are derived from those connected
with the strain space, and moreover, from a relation between the stress
space variable and that of the strain space, another such relation
which is of dual form to the former may be obtained. The problem
that confronts us is the determination of physical features of the
deformation which are implied by the given dual mathematial formula
or relation (see, Fig. 1).

For instance, a stress-strain relation is adopted as a basic
mathematical relation to describe the features of the deformation.

The dual mathematical relation of it is the incompatibility versus
stress function relation. The problem we have to solve is how to
determine the deformation formulated by the latter relationm.

The concept of the dual yielding is considered initially along
the line of thought we have just indicated above. Prof. Kondo's
equation of yielding is of such form

ijkl _ ij B
alaj( B akbiu ) ai( o aju ) =0, (2:1)
and his boundary conditions
ijkn i
B 9,3,u =0 (2.2)
and
injk _ i _
3,( B ajaiu ) - ot d.u =0, (2.3)
where Blel are the matter constants, otd the stresses and n

means the direction normal to the surface of the body.
The dual of equation (2.1) must be of the form

*)  As regards the dislocation pair, dislocation and dual dislocation,
references (1 - 4, 14) should be referred to.
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. ..
alaj( ctd 0 8;v ) - 9, ( gt 0v) =o, (2.4)
and those of (2.2) ang (2.3)
o
ctd 3,9.v =0 (2.5)
and
injk i
8¢ ¢ ™ ajaiv ] = g 3.v = o, (2.6)

wheres g8k o0 oo matter constants, J%J the incompatibility and
v 1is the multi-dimensional deflection of the material point which is
similar to u ip Prof. Kondo's equation.

'The appearance of v means that the material point deviates from
Physical three—oimensional space into the enveloping multi-dimensional
space as shown in Fig.2.  Equations (2.4), (2.5) and (2.6) indicate
that such g multi—dimensional deflection of the material point appears
when the incompatibility reaches a certain critical value.

In the Previous lecture (4), Prof. Kondo indicated that those
two groups of €quations are derived from the principle of minimum

According to Prof. Kondo, the multi-dimensional deflection v . ig
referable to the genesis of the fracture, and the incompatibility b
to an atmosphere which appears in the interior of the material body
when Fhe fatigue is advancedq. Through such an interpretation
equation (2.4) becomes one which describes a critical Phenomenon that

atmosphere reaches a certain critical value. Therefore, the equationg
of dual yielding are those of fatigue fracture for, at least, a certain
idealized type.

That the equationg are those of fatigue fracture must be confirmed
by the fact that all physical properties of the fatigue fracture of the
materials are derived from those equations by means of analytical pro-
cedures. One such confirmation procedure is the derivation of the
S - N curve, such as will be concerned with in the next section.

3. Fatigue fracture of an isotropic body

If the materials are isotropic, then the material constants

C Vanish except for the two of the forms Cllli and Ciijj
and ?urther those components become respectively independent of the
suffixes. Therefore, they may be put into

ijkl

Cllll =cC and CllJJ - qc’
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where C and q are the scalars. In this special case, equations
(2.4), (2.5) and (2.6) take such forms as

Ny -
CAAv -4 ajaiv = 0, (3.1)
(1+q) C aiv Ty (3.2)
and 3 i
(2+q) C anv - (1+q9) C anv - J_naiv =0 (3.3)

respectively, where A means the Laplacean operator. If we assume that
the atmosphere which grows in the interior of the material body is iso-

tropic, then the tensor JlJ must be

g ot g, (3.4)
J being a scalar. Under such an assumption, equation (3.1) can further
be reduced to
CAAv -JAv=o. (3.5)

Next we shall consider the fundamental metric form of the stress
space. We assume that, in the microscopic region of the material body,
the disturbance of the materials by fatigue is homogeneous and spherically
symmetric with respect to an arbitrary point of the body, and is inde-
pendent of the large scale state of the materials. Under such an
assumption, the metric differential form is reduced to
P = L 5 ar® 3 12 ( da? %a ap° )y (3.6)

de + sin

1 -sr

where s 1is a value connected with the stress amplitude, and r, a and

B the cubic coordinates.
From such a metric form and from equation (3.5) we have either

i) p=0 or ii): s.= 0.

In Fig. 3 we draw a graph which has the values of s and p as the
ordinate and abscissa respectively. Since the value of p increases
with the time, it may be used instead of the time, or of the number of
cycles of stress, whereas the value of s is connected with the amplitude
of stress acting on the test piece from the out side. Solution i)
means that the test piece is damaged as soon as the incompatibility
becomes finite. Solution ii) means that the test piece is damaged as
soon as it is loaded. Therefore, in such a case, the S-N curve takes
a form as shown by the thick line in the figure.

Of course, the S-N curve is not necessarily of such a simple form,
but may be of the form such as shown by the dotted line. Prof. Kondo
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has shown that such an S-N curve can be derived from the above mentioned
equations through a more advanced analysis. He demonstrated this in
the previous lecture (4).

k. Concluding summary

Inspired by the very implicative investigation of Prof. Kondo into
the multi-dimensional geometrical formulation of the critical condition
-r yielding, we hit upon the possibility of assuming the same type of
multi-dimensional formalism of the critical condition for fatigue frac-
ture. This is anticipated by considering the formal duality between
two geometrical formulations of the state of the body; one describing

the deformation and the other the stress.

The analytical justifications of the assumption, as well as most
of the interpretation of its physics, has been provided by Prof. Kondo
who recognized it as a Physical possibility.

The equations we assumed (2.4), (2.5) and (2.6) indicate the
Possibility of existence of a critical phenomenon such that

when the growing incompatibility reaches a value which is
Obtained as an eigen value of the field equation, the multi-
dimensional deflection perpendicular to the physical 3-space
needs to appear.
This being a dual of yielding, is comparable, as Prof. Kondo pointed
out, with the process of the fracture of materials by fatigue:

when a growing atmosphere reaches a certain amount, genesis
of fracture begins to develope into visible size.

The comparison is completed by referring the incompatibility to an
atmosphere which is created through the process of fatigue, and the
multi-dimensional deflection to an unobserved object to be set in
correspondence with the genesis of fracture.

What we have undertaken next is a heuristic derivation of a proto-
type of the S-N curve for the fatigue experiment. For simplicity's
sake, a certain isotropy was assumed to arrive at a simplest form of
the S-N curve which agrees with the half abscissa and the half ordinate.

The investigation discussed here has just been started and there
are many problems to be attacked. With the development of the analysis
the theory may have to be in part refined. However, we believe that
the ideas we have just considered may indeed offer a new key to the
solution of the problem of fatigue fracture.

I would like to express my sincere thanks to Prof. Kondo who
invited me to undertake this investigation and who offered kind
guidance and criticism. I also thank Prof. Yokobori who gave me
the opportunity to give this lecture at the conference.
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Fig. 1 Deformation and dual deformation

Fig. 2 Liberation and dual liberation

Fig, 3 Typical S - N curve
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