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ABSTRACT

The influence of plastic deformation on the propagation of a crack
is discussed from a theoretical point of view. The interaction of the
moving crack with dislocations already present in the material is con-
sidered, as well as the possible creation of new loops of dislocation by
plastic relaxation. It is concluded that dislocations already present have
very little effect on the propagation of the crack, even in heavily cold-
worked materials. What matters essentially is whether plastic relaxation
can occur, and, to a much smaller degree, whether the material is poly-
crystalline, making it necessary for the crack to cross grain boundaries.

Introduction

When under a large enough stress, a crystalline material can cither
shear plastically (by slipping or twinning), lengthen by [racture, or do
both successively or simultaneously. It has been much emphasized re-
cently '* that a little plastic strain is often necessary to produce the stress
concentrations that start cleavage. It is also known, however, that too
much plastic deformation inhibits “‘brittle” fractures. Large strains,
usually of the order of 50 to 100%, are then necessary to produce a
“ductile” fracture. It is mainly this second aspect that is in view here,
but the various factors involved are more easily studied in the case of
cleavage first.

Fracture will occur when a certain equilibrium is reached between the
driving force and the resistance encountered. The special resistance
produced by work hardening will be discussed first, following which will
be a discussion of the driving force to be expected in a work-hardened
material. It will be emphasized that the exact nature of work hardening
does not matter very much in ductile fracture, and finally, it will be
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pointed out that the resistance offered by a work-hardened material to
cleavage and the resistance to slipping or twinning are similar in nature,
although somewhat different in strength.

Resistance Offered by Work Hardening to the Propaga-
tion of Cleavage

Two kinds of effects must be considered: surface effects (steps, blunt-
ing of the tip of the crack) and long-range elastic effects (interaction of
the crack with dislocations already present, plastic relaxation). They
will be analyzed by comparing cases where work hardening is absent to
those where it precedes or is simultaneous with crack propagation.

Brittle Cleavage Without Stress Relaxation

It should first be recalled that the tip of a crack can be considered as a
piled-up group of climbing dislocations. This analogy helps to clarify
the study of the resistance offered in this case by the grown-in disloca-
tions, and it especially aids in explaining the “‘river” markings.

Griffith crack as a piled-up group of climbing dislocations. It is
self-evident that the production of a Griffith crack (Fig. 1) can be de-
scribed in terms of climbing dislocations. It is produced by a group of
n' dislocations climbing perpendicular to their Burgers vectors 5" from
region A to regions B and B’ at the tip of the crack. There is, in fact, a
continuous distribution of such dislocations with infinitesimal Burgers
vectors b so that

't =h (1)

where 4 is the distance between the sides Sy and Sy of the crack.

Since the length L of the crack is much greater than both the width A
and the atomic dimensions, the state of strain and the elastic energy
stored in the material are, not surprisingly, similar to those around a
slip band produced by a piled-up group of gliding dislocations.” Thus
most of the »’ dislocations are concentrated at the tip of the crack. At
equilibrium, their back stress compensates for the stress o applied on the
crack (Fig. 1a). At the center 4 of the crack, this gives

_ pn'd" uh @)
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where u is the elastic modulus, v is Poisson’s ratio, @ = 1 for a penny-
shaped ellipsoidal crack,®” and a = /2 for a long cylindrical one.®

The stress o at a distance r from the tip of the crack is

o ~0c (li) ” (3)
7
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if r is small compared with L but large compared with atomic dimensions.
The force 7 per unit length acting on the leading dislocations at the tip
of the crack is obtained by equating the work done on the leading dislo-
cations when the crack lengthens to the work done by the applied

(d)

(@)
Fig. 1. Griffith crack as a piled-up group of climbing dislocations: (a) the crack, (b)
the distribution of dislocations with their (empty) supplementary half-planes.

stress . As most of the »’ dislocations are at the tip of the crack, this
gives, according to Eq. 3,
F = Boh= ap(l - v)La* (4)
u
where 8 is a numerical factor of the order of 1. FExact computation $
gives 8 = 1.

In a perfect crystal, a crack is produced when the atomic planes P
and P’ (Fig. 14) have separated a distance approximately equal to their
normal distance 6, thus breaking their bonds. At the tip of the crack,
the leading group of dislocations with physical significance has therefore a total
Burgers vector b. The crack propagates when the driving force (Eq. 4)
acting on it is larger than the resistance resulting from the production of
surface energy v, on the cleavage plane. This leads to the well-known
Griflith criterion for propagation:

4/‘_"’3/0 s
= [a(l - u)L] ()
with av ~ 1.

Elastic interaction with grown-in dislocations. Crystals, even when
well annealed, are rarely perfect. The dislocations of their Frank net ?
will interact with the propagating crack. We assume here that they are
fixed, leaving for later the question of plastic relaxation.

One type of interaction is due to the long-range stresses produced by
the Frank net. This will be shown to be negligible. Dislocations outside
the cleavage plane produce a randomly distributed internal stress 10 o, of
average value zero, with wavelengths approximating the size /» of the
Frank net in the three dimensions and with an amplitude of the order of
Mb/2mwle. By a well-known argument,'! this stress is too weak to produce
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any significant deviation of the tip of the crack, because the tip is equiva-
lent to a dislocation with a very strong line tension u(n's’)? = uh?. The
tip of the crack remains straight, and it averages out these internal stresses,
which exert no measurable frictional force.

Dislocations piercing the cleavage plane exert at short range a stress that
varies inversely with the distance r and vanishes only if a dislocation is
normal to the cleavage plane or if jts Burgers vector is parallel to it.
This stress varies in sign and strength with the nature and the orientation
of the dislocation, but its average absolute value is of the order 10 of

0y = Eﬁ (6)

Such a stress, acting on a crack length of at most r, produces a total
lorce wbh/10. This is again negligible compared with the line tension
uA*. The tip of the crack, remaining straight, averages out this kind of
interaction too.

Short-range interactions with grown-in dislocations. This is the
interaction usually considered.'” When the tip of the crack crosses a
dislocation with Burgers vector not parallel to the cleavage plane, the
screw component of the dislocation produces a step of height 6 (or a
multiple of 4) on each face of the cleavage (Fig. 2). These steps usually
run normal to the tip of the crack, thus minimizing their length (F ig. 3a).
Their tension v is then usually larger than v, in the cleavage plane
because their orientation is not a simple crystallographic one. *

These steps increase the resistance to the propagation of the crack.
For steps normal to the tip of the crack, Griffith’s criterion becomes

2]

b
Yetr = Yo + 1/ (8)

with

where [ is their average distance along the tip of the crack. With a
reasonable value (y =~ ub/5), the traction (b >~ ub?/5) of a step is very

* These steps would follow a simple crystallographic direction only if the gain in
surface tension could compensate for their increase in length. A glance at Fig. 34
shows that the condition is

Yo' < 7y cos ¢
if the crystallographic direction considered has a surface tension 7y, and makes an
angle 6 with the tip of the crack. Except in very anisotropic substances, vy’ is unlikely
to be much smaller than 2v/3, or perhaps even v/2, so that ¢ must be near to the
value /2. An example of multiple steps with probably two crystallographic direc-
tions has been observed on calcite 13 with ¢; ~ 7/4 and ¢, ~ /20, but such a be-
havior seems exceptional.
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small compared to the line tension uk? of the tip of the crack; the pres-
ence of the steps does not alter appreciably the general course of the
crack. When the tip of the crack crosses a screw dislocation, there is a

Fig. 2. Step § produced on a cleavage
surface when the tip of the crack, moving
from left to right, crosses a dislocation
£ with a screw component.

—0

T

(a) {b)
Fig. 3. Orientation of the steps relative to the tip of
the crack: (a) general case, (b) special case of low
surface tension.

further expenditure of energy to lengthen the dislocations of the crack
by the height & of the forming step. For the leading dislocation, this is
an energy expenditure of the order of that required by a jog %5 (thus of
the order of ub?/10) spent over a distance b; this leads to an effective
tension ¥ of the same order of magnitude as that obtained using Eq. 8.
All these effects are therefore negligible.

Coalescence of steps. When a crack has propagated through dis-
tances that are large compared with the average distance [ between the
“trees” of the forest of screw dislocations, one could expect the density
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of steps to be large and the resistance to cleavage appreciable. This is,
however, not so, because the individual steps quickly coalesce. This
process gives rise to many mutual annihilations of steps with opposite
signs and to a few multiple steps that become optically visible. These
are the “river’” markings of brittle cleavages.

Rivers are possible because the course of a step is usually far from
straight. "The reason is that its course is set by the behavior of the leading
dislocation with Burgers vector b at the tip of the crack. This dislocation
has a “normal” line tension 7"~ ub*; it can therefore progress from left
to right (Fig. 3a) only if it bows out with a fairly large angle 6. The
equilibrium of the tensions at point .S gives:

sin 6 = Yé o )

A reasonable value (y = ub/5) gives sin 6 >~ § >~ % rad. The corre-
sponding force /7y applied on the leading dislocation is that which is
necessary to produce the steps:
Fy= ah— 2yy = 2y ? oy %flé

When there are not yet too many steps ({ > lp), this is not a very large
force; any perturbation might alter noticeably the course of the steps.

The forces associated with the internal siresses described earlier are of
the same order of magnitude. They should make a step oscillate markedly
around its general direction, which is normal to the tip of the crack.

When two neighboring steps are at a distance // smaller than the average
distance / between steps, they should quickly coalesce. This is shown in
Fig. 4, where the steps are assumed, for simplicity, to be alternately at
distances I” and " (5 (') such that I’ 4 [ = 2/. The equilibrium of the
tensions at a point such as A1 gives

J1
~—§i; =2cotp>m—2p =0 ~ 6"
with
v 2T ubl
sin @ " sin 07T F, Ty

(10)

Neighboring steps should coalesce when the tip of the crack has advanced
by

bl 21 )
xo:%- “‘,37 (11)
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if 8 = (I’ — )= is the initial difference of distance between the steps.
This will usually be an appreciable fraction of the average distance /,

I

Tig. 4. Coalescence of nonequidistant steps.

and x, is then of the order of a few ubl/y =~ 5I. The two steps should

meet at angle
dl’ g AP . &
o= (G) =~ =

Multiple steps. When two steps meet, they either form a double
step of height 2b or annihilate, depending on whether their signs are the
same or opposite. Double steps may also coalesce into higher ones by
the same mechanism..

It is of interest to analyze the behavior of the tip of a crack when it is
driving such a multiple step of height mb (m > 1). The main point is
that the leading dislocation of Burgers vector b arrives at the step at
points M and N in different cleavage planes (Fig. 5a). The two parts
are normally* connected by a part MN which runs across the forming
step, thus forming two elementary steps of height b/2 along the edge MN.
The subsequent dislocations in the crack widen these two steps until they
meet to form the final one with height mé. The equilibrium conditions
for the leading dislocation in MN are the same as for simple steps. What-
ever their height, multiple steps should therefore oscillate and coalesce in essentially
the same way. This is borne out by a discussion of the river patterns.

* Another possibility would be for the dislocation to bend over a certain length
along the edges MM'N’N of the incipient step (Fig. 56). The force pulling back the
tip of the crack on M and N is of the same order of magnitude as that in Fig. 5a.
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River patterns. Two types of river patterns may be distinguished:
those formed when a cleavage develops in a crystal, and those formed
after cleavage has gone through a grain boundary.

After having gone through a grain boundary, a cleavage has a high
density of similar elementary steps that are the result of the crossing of
the parallel dislocations of the boundary. These coalesce into multiple

(a) (b)

Fig. 5. Two possible behaviors of the dislocations at the tip of a crack where it meets
a step of multiple height mb: (a) large step (m > 10); (b) small step (m < 10).

steps of increasing height in a characteristic manner = (Fig. 6). In
agreement with the aforementioned conclusions, all the steps are inclined
in the same way: Neighboring steps usually run a distance 5 to 10 times
their initial distance before coalescing; their courses oscillate somewhat,
but they often present a slight curvature towards each other, meeting
at a fairly large angle, usually about 4. This confirms our general pic-
ture and the estimate, ¥ =~ ub/5, for the surface tension along a step.
Finally, the height of the steps increases proportionately to the distance
from the grain boundary. This height is approximately equal to the dis-
tance between steps and may reach large values.

When developing through a crystal where it was initiated, a cleavage has
less well-marked rivers. These only begin to be optically visible some
distance from the origin of the crack. They are made up of steps of both
signs, they are somewhat further apart, they coalesce less quickly, and
new ones continually form so that their average distance remains fairly con-
stant, of the order of a few microns. Finally, their height increases much
less rapidly with distance; some steps actually decrease in height or even
stop '* (point M, Fig. 7). These characteristics are those to be expected
from the coalescence of steps of both signs starting from the randomly
distributed dislocations P of the Frank net. The short, lateral branches
such as PQ (Fig. 7) are not usually visible, because they are made by
elementary steps. For no new river to start in between, the distance
between two rivers must be of the order of the size /r of the Frank net.
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Each clementary step then coalesces with the nearest river, at a distance
of the order of p; the average distance between successive meeting
points Q, Q, Q" on a river is thus of the order of [z. As the elementary
tributaries have random signs, the height of the step should increase on

Fig. 6. Coalescence of steps resulting Fig. 7. River patterns within
from a low-angle boundary (crack a crystal. The crack started
moving from left to right). from corner A4; the lateral

branches such as PQ are usu-
ally not visible.

the average as the scfuare root of its total length, which is approximately
the crack length L. Therefore
1
mb o~ (L) ) (13)
lp

Typical values of the constants, /p > 107% cm and L < 1cm, give
m < 30 and mb < lg. Thus the height of the steps remains small com-
pared with their distance., This is in agreement with observations on
LiF .1

The effective surface tension appearing in the corresponding Griffith criterion
(Eq. 7) is thus bractically the same as 7y, for a perfect crystal:

myb
Yeit = Yo+ BT
2
Therefore, the coalescence of steps is a very powerful mechanism for

climinating steps.

Brittle Cleavage with Stress Relaxation

This is a fundamental kind of problem where work hardening plays
a role in cleavage.

Around the tip of a crack propagating in a brittle material, stresses
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are very high: At a distance r from the tip, small compared with the
length L of the crack, they are, according to Egs. 3 and 5, of the order of

e {*)%‘ ____A'EI&_,]”‘;N A% ;
7 *—o-(r 2 a(l — p)r bl 4

In this expression, a reasonable value (Yo =< ub/10) has been taken for
the surface tension v, in the cleavage plane.

These very high stresses might induce some plastic deformation near
the tip of the crack if they are applied for a long enough time on the same
volume of material, that is, if the crack moves slowly enough. Various
experiments have now shown that there is a critical velocity of propaga-
tion of the crack below which plastic relaxation occurs.

Critical velocity of crack propagation. Plastic relaxation can occur
by making neighhoring dislocations move or even by creating new ones
in regions of perfect crystal. These two processes lead to two somewhat
different criteria, which have been studied theoretically by Stroh 17 and
Gilman,' respectively.

(@) Activation of neighboring sources. These might be Frank-Read !9
sources, that is, segments of dislocation lines more or less fixed at their
extremities, or small loops of dislocations produced by quenching. .2

In ductile materials, the stress acting on the nearest Frank-Read sources
(at distances r >~ /) is of the order of u(b/2lp)*, according to Eq.14. It
is much larger than the elastic limit, which is of the order of b/ 104,
(see Eq. 27). Plastic relaxation will begin when this stress acts for a long
time compared with the time necessary for a loop to be emitted (c/lp)—*
(where ¢ is the sound velocity).?* The critical velocity of crack propaga-
tion is thus

As this is the maximum possible velocity for the crack, plastic relaxation
should always occur in ductile materials (except perhaps in the relativistic
region v =~ ¢ where Eq. 14 does not apply).

In britle materials, grown-in dislocations are only able to bend and
cmit loops under the fairly high stress necessary to move them against a
strong Peierls-Nabarro force or free them from pinning by precipitates
or impurity atoms. These processes are thermally activated with an
activation energy {7 which usually depends markedly on the applied
stress 0 = w(b/2(p)*. (For fine precipitates and Coterell clouds at very
low temperatures,®2t 7 varies linearly with o,; for Cottrell clouds at
higher temperatures,® 7 varies as o.7%) As a result, the rate of emission
of loops and thus the critical velocity », which vary as exp(— U/kT),
will depend markedly on the exact size of the F rank net. They should
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thus vary from sample to sample. Cases of plastic relaxation, probably of
this type, in iron have been reported by Low.!®

Furthermore, many of these materials exhibit, in slow homogeneous
tensile tests, elastic limits much larger than any likely value of
o, ~ u(b/2lp)*. For these materials, plastic relaxation could only occur
by a second mechanism which will now be described.

Fig. 8. Relaxing loop of dislocation at the tip
of a crack.

(b) Creation of loops in perfect crystals. 'This process has been suggested
by Gilman to explain the creation of many loops around the tips of cracks
in regions of LiF crystals that are very far from any visible Frank-
Read source,® and the process does seem the most likely possibility in
that case, although some neighboring invisible Frank-Read sources or
some quenched-in dislocation loops might have been present.

It will be shown here that the stresses around a crack are barely suffi-
cient for such a process. As a consequence, it probably occurs in only a re-
stricted number of materials. When it occurs, the slip nucleates from the crack itself: A
step C appears on the surface of the crack and is compensated by the
development of a “punching” dislocation C’ on a cylinder passing along
C and parallel to the Burgers vector of the slip (Fig. 8).

Consider a loop of diameter D under a shear stress 0. The critical
value of D, above which the loop expands, is obtained by minimizing the

total energy: 18:%
_ubtD, D wD
Ub) = "4xk In bo =
thus
W _w eDe_TbD.
dD, 4K bo 2
Then
pb?D. | D
D) = Mo ey, Le s
U.) S I o -

where K =~ 1, ¢ is the base of natural logarithms, and b is the usual
parameter related to the core energy.
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The stresses at the tip of the crack are given by Eq. 14 with r at least

of the order of D.. Thus
2D\% 1 eD,
("b) = %= (16)

It is easy to see that such an equation can have a solution only if the
parameter by is much smaller than 6. This is rarely the case, as esti-
mated *? by values are usually larger than 4/2.

If there is a solution to Eq. 16, it is of atomic dimensions at most,
D. == b, so the loop is really punched from the surface of the crack. The
corresponding activation energy U(D,) is a very small fraction of ub?
thus a small fraction of 1 ev. Loops can be produced only if the velocity
of the crack is such that

[](Dr>] (17)

v < cexp |:— 5T

where ¢ is, as before, the velocity of sound.

A critical velocity under which plastic relaxation occurs 1s indeed ob-
served in LiF; this is # =~ 10~% at room temperature, leading to an acti-
vation energy {/~0.1 ev. However, small loops are still formed at
77°K but do not expand as they do at room temperature. As pointed
out by Gilman, this might indicate that the critical velocity observed is
due to a Peierls-Nabarro force.’® The activation energy U(D.) for the
formation of loops should be still smaller (U < 0.025 ev).

Extension of the plastic relaxation. From the preceding section, it is
clear that the mechanism and amount of plastic relaxation depend very
much on the material and on the velocity of the crack. We shall now
consider a fairly ductile material with a slowly moving crack.

If the material has many possible slip systems, there will be a cylindrical
region of fairly big radius R around the tip of the crack where the elastic
stresses of the crack have been almost completely relaxed. In terms of
dislocations, the Frank-Read sources of this region have emitted loops,
some part C of which have come to the immediate neighborhood of the
tip of the crack in such a way that their total Burgers vector just compen-
sates that h = n'b’ of the crack. The stress relaxation produced makes
the piling-up of the dislocations of the crack easier, which thus blunts
the tip of the crack; the crack now has parallel edges, except very near
the tips. The parts C” of the same loops farther from the crack must have
a total Burgers vector equal to £ (Fig. 9). Each of the parts C” does not
feel the elastic stress of the crack, which has been relaxed, but only the
stress resulting from the other similar parts C’. They are repelled from
the crack to a distance R so that their mutual repulsion is equal to the
clastic limit ¢, of the material.
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In this somewhat oversimplified model, the plastic relaxation replaces
the large dislocation at the tip of the crack with a fairly continuous dis-
tribution of dislocations along a cylinder of radius £ with the same total
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Fig. 9. Two mechanisms of plastic relaxation around the tip of a crack.

Burgers vector. The stress on each of these dislocations is of the order of
uh/R.* Thus,

R __u
P (18)

Certain refinements of the model are now considered:

1. Incomplete plastic relaxation occurs if only a few slip (or twin)
systems are possible in the material. However, the preceding analysis
applies to that part of the stresses that can be relaxed.

2. If the loops are punched in the perfect crystal, they occur at the sur-
face of the crack. The parts €' of the loops should then appear as regularly
spaced steps on the tip of the crack, which should take sharp edges, with
radii of curvature of atomic dimensions. The parts € of the loops should
be piled up somewhat anisotropically along the glide planes issuing from
the tip of the crack (Fig. 10). If the loops are emitted by neighboring
Frank-Read sources, the distribution of the parts ¢’ should be more
isotropic, as in Fig. 9. The parts C of the loops should be less regularly
spaced along the crack, and they should relax the stresses at a somewhat
larger distance, of the order of the size {r of the Frank net. This is also

* There are about i/b dislocations on the cylinder, at distances R = 2mwRb/h.
The stress they exert on one of them is

S‘ b ~ / € ub ( h ) 2uh 2k
___________________________________________________________________ N df = 2y 2B
e 4rksin 0/2)\2x) Y T #R ™ 5

For 10% < a/b < 108, this expression is of the order of Mi/R.
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the size of the region where the blunting should occur and should thus
be the average radius of curvature at the head of the relaxed crack.

3. The model neglects the parts of the dislocation loops that lie in
the plastic region between the parts C near the axis and the parts ¢’

(a) (b)
Fig. 10. Edges and zones of plastic relaxation at successive positions of rest of the tip
of a crack: (a) top view, (b) cross section.

near the outside limit. It also neglects the fact that, when emitted in
great numbers, these loops must intersect or pile against each other. The
resulting work hardening prevents some of the loops C’ from reaching
the surface of the cylinder. A better value for 0. than the elastic limit

- would thus be an indentation hardness. With 0. > 10"%u in ordinary

materials, Eq. 18 then gives
R >~ 103 (19)

4. When plastic relaxation occurs, the width 4 of the crack varies,
depending on the value of R compared with the size A of the crystal and
the length L of the crack. In this connection, one has to distinguish be-
tween “brittle” and “ductile” cracks: The former merely blunt, the
latter also widen under the applied stress.

(@) “Britile” cracks. If R < A and L, then the back stresses acting on
the middle of the crack are practically unaltered by the plastic relaxation
because this does not change the total Burgers vector / in the cylinders of
radius R; therefore the plastic relaxation does not change the width h of the
¢rack, it makes the crack only somewhat blunter and diminishes the stress
concentrations by transferring them from the axis to the surface of the
plastic cylinder. Equation 3 is still valid and gives, with Eq. 18, for the
size of the cylinders:

R~Zr~1007 (20)
7. n
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From this equation, it follows that the case considered here only applies
to fairly brittle materials or to fatigue, when a crack propagates at stresses
o well below the plastic limit o.. The specimen must also be thick com-
pared with the length of the crack.

(b) “Ductile” cracks. If R ~ L (ductile materials, where ¢ is not much
smaller than ¢.) or R = A (thin specimens), plastic relaxation very much
reduces the back stress on the middle of the crack and can then widen the
crack considerably. The tip of the crack is again somewhat blunted.

Stability of the plastic relaxation. Before plastic deformation sets
in, the width 4 of a crack is proportional to the applied stress o, and it is
so small as to make cracks difficult to observe (from Eq. 3, #/L >~ a/u,
usually <107%).

Once plastic relaxation has occurred, the crack preserves a width

almost equal to that reached under the applied stress, even when the
stress is removed; plastic blunting of the tips stabilizes a crack. The reason is
that the relaxing dislocation loops C’ build up, together with the tip of
the crack, a fairly stable system, and this remains practically unaltered
when the applied stress is removed. There is little tendency for the dis-
locations piled up at the tip of the crack to retract towards the left (Fig. 9),
because they are immediately called back by the stresses resulting from
the plastic loops. For the crack to be destroyed; one would need an
applied stress opposite in sign and at least equal to that which has created
it.  Use can be made of this characteristic stability of plastic phenomena
to check these conclusions. Two examples will be given:
" (@) Ductile cracks in iron. It has been observed ** that at low tempera-
ture polycrystalline iron with a fine enough grain fractures only after
extensive plastic deformation. At small strains, cracks are already ob-
served across many grains, but they do not seem to cross grain boundaries,
probably because the stress concentrations at the tips of the cracks are too
small to force the crack to propagate from grain to grain.?>>* These
cracks are obviously, as they should be, of the ductile type defined above:
They have parallel edges and blunted tips, and a heavy deformation is
visible near the tips. Finally, their width appears to be a few tenths of
their length, although the stresses applied were at most of the order of
10~2u.

(b) Brittle fracture in lithium fluoride. A good example of the type of
plastic relaxation pictured in Fig. 10 is given in one of Gilman’s papers
on LiF. As far as can be seen from heavy etching, the two edges of the
crack are parallel down to a blunted tip. Dislocation loops around the
tip concentrate on the four slip planes going through the tip. This is
in agreement with Gilman’s contention that they are issued from the tip
and not from neighboring Frank-Read sources. The number of etch
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pits should give the number of loops C’ and thus an order of mag‘nitu‘dc
of the width of the crack. It seems that there are about 200 etch pits,
corresponding probably to a total Burgers vector h >~ 1006 2 5 X 1()“Ct cm.
As the length L of the crack is much larger than the plastlc'rcglon, Eq. 3
gives the stress that was applied to propagate the crack. With L =~ a few
millimeters, this gives reasonable stress ¢ =~ 5 X 107 dynes/ cm-z. .A?cord-
ing to Eq. 19 and with ¢, ~2 X 10* dynes/cm? for the elastic limit, the
size of the plastic region should be R ~2 X 10~%cm, a go‘od e'igr.eem?nt
with experiment. As Eq. 19 was established for an isotropic distribution
of dislocation loops of the type pictured in Fig. 8, no more than an order-
of-magnitude agreement is to be expected. . '

Blocking of cracks by plastic relaxation. The 'plasnc relax?tlon,
by stabilizing the tip of a crack, opposes its further dxsplacc{rr?cnf in the
forward as well as in the backward direction. For velocities smaller
than the critical ones described on p. 509, the crack stops suddenly_and
starts again only under a higher applied stress.’® To estimate this “fric-
tional” force, one must distinguish various factors.

(a) Plastic work and blunting of the crack. Plastic relaxation cha‘nges a
large piled-up group of dislocations in a crack into a more continuous
distribution over a region of size R. The plastic work W thus done is
equal to the decrease in elastic energy stored: *
uh* 2R

In

= 21)
ik (

W~

As soon as R becomes large compared with the width / of the thin
elastic crack, this energy becomes a large fraction of the tot'al clastic
energy stored. Once the crack has started to relax, it will be energetically more
favorc.zble for the crack to stop and to relax completely. Once it has stopped, a smqll
increase in stress, if slowly applied, will widen it plastically in preference to making
it start again. . '

The crack might start to move again if a large enough increase in J'tfé'SS.l.Y sud-
denly applied.* This will pile up new crack dislocations at the tip. If
they arrive quickly enough, they will build up a large enough stress con-
cen‘tration to induce the tip of the crack to move before plastic relaxation
sets in. The increase in stress Ao must obey a Griffith criterion of the form
of Eq. 7, where

~s R
Yett = Yo b

* Another a priori possibility would be for the hardening produced by the initia-
plastic relaxation to be large enough to prevent any further relaxation. However,
this is impossible, as has already been discussed.
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if p is the radius of curvature of the blunted crack. This equation leads
Fo quite Fiiﬂ'erent conditions, depending on which relaxation mechanism
18 operative,

In the usual case, where relaxation proba bly occurs through activation
of neighboring sources, the crack is so blunt that no further propagation
:s‘hould be possible (p ~ /,, = 10%). When relaxation occurs by pbunch~
ing dislocations from the crack into the perfect crystal, the edges of the
crack should be so sharp that propagation should be possible under a
small stress increment Ag (p = a few b).

v Only the new crack dislocations move forward; they leave behind the
“old” crack dislocations of the blunted tip as “ridges” on the cleavage
planes, stabilized by a surrounding plastic region. Such parallel ridges,
with their surrounding clouds of dislocation laops, are a feature of cleay-
ages where plastic relaxation has occurred periodically.!6.18.20 Figure 10q
pictures schematically these ridges as observed on the cleavagé planes.
Figure 106 shows the cross section of a crack that has stopped (position A);
etch pits resulting from dislocations and the change of width can he seen
at a previous position (B).

. () Cleavage steps. The cloud of dislocations in the plastic region gives
rise t‘o many steps when crossed by the crack. This is, howev‘er, not a
VEry important factor in the propagation of the crack.

The density of this cloud can be estimated by the following argument:
Except in the very special case where the tip of the crack runs parallel
‘Lo.the intersection of several slip planes, each loop in the plastic region
15 1n a plane making a large angle with the crack. It relaxes the stresses
of a crack dislocation only over the distance A ~ hy, where it combines
with the crack to blunt it (Fig. 8).  The total number of loops C necessary
for complete relaxation is thus 4/b X b/A, which is about one per distance
b along the crack. The corresponcing density of loops C’ piercing the
cleavage plane in the plastic region of size R is

1
per 2 s (22)

2bR

In Gilman's observations on LiF, R~ 10— cm; the density pre-
fiicted is ~10%/cm?, somewhat larger than that observed (107 to 10%/cm?),
This is due, at least partly, to some of the loops having “popped” out
of the crystal after the cleavage had developed.2

An estimate of the corresponding frictional stress A can then be oh-
tained. If each loop C gave rise to a step normal to the tip of the crack
\./vhen it moved forward, A would be given by Griffith’s criterion of the
torm of Eqs. 7 and 8, with / >~ 6. Since y ~ 20, Ao should be about twice
the initial stress o. When the crack has moved a distance large compared
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with R, these steps should have disappeared by recombination with steps
of opposite sign issued from the corresponding loops C’.  Another possi-
hility is for all the steps C to coalesce into a ridge parallel to the tip of the
crack (Fig. 10a). Steps normal to the crack are then only created by the
toops C’. They are all of the same sign, and thus they should form rivers,
such as those of Fig. 6, when the crack has moved a distance large com-
pared with R. The total height of the steps would then be the same as
in the first case when the crack has Just started moving. Both cases lead
therefore to the same value of Ag.

Inspection of step patterns shows that both cases occur, as do inter-
mediate ones 1% for which the stress level Ae should be somewhat smaller.

From the discussion, it follows that, once fully blunted by plastic re-
laxation, a crack is difficult to propagate again except under a high
enough strain rate and in a fairly brittle material.

Ductile Cleavage

The preceding discussion helps to explain the propagation of cleavage
in a material previously work hardened.

Plastic relaxation. Since the stresses of Eq. 2 around an unblunted
crack are much larger than any likely hardness resulting from work
hardening, a stationary crack is surely blunted by plastic relaxation even
in a very highly work-hardened material. There will therefore be a
¢ritical velocity below which the crack blunts plastically and stops. By the
argument given earlier, which is still valid, this velocity is near to that of
sound, except in fairly brittle materials (aged impure materials, crystals
with a high Peierls-Nabarro force), where the critical velocity will be
somewhat lower. Thus only fast cracks are mobile.

Appearance of fast cracks. The creation of steps should lead to the
type of river pattern pictured in Fig. 7, containing parallel multiple steps
of both signs. Their average distance is of the order of a few times the
distance /¢ between dislocations in the material, and their average height
mb increases slowly with the size L of the crack, according to Eq. 13.

For highly work-hardened materials, lp >~ 107% cm. Individual rivers
should then be hardly visible. The cleavage surfaces should be fairly
simmooth and parallel to a crystallographic plane over a distance L such
that mb <{p. Thus L should be smaller than a critical distance

1@ : ,
Le=—~10"%cm 23
5 (23)
At larger distances, the crack should become progressively noncrystallo-
graphic.
These predictions are in good agreement with detailed observations on
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ductile cracks occurring around small precipitates in austenitic or ferritic
steels.® At the striction, a large number of such cracks appear across a
section of the sample. Observed with the electron microscope, the cleav-
ages are fairly smooth and near to a crystallographic plane in the central
part of each crack at distances of a few microns from its precipitate. At
larger distances, the cracks become completely noncrystallographic.
These are the so-called “fibrous” cracks observed in a number of ductile
fractures.?0-3

Resistance to the propagation of fast cracks. As for brittle cracks,
and for the same reasons, the resistance owing to the internal stresses is
negligible. Two other factors might be considered: step formation and,
eventually, grain size.

(a) Steps. The creation of steps of height mb and distance of the order
of 2y leads to a Griffith criterion of the type of Eq. 7, with an effective
surface tension given by

! L\* )
‘Yuffgfy()_i_’ygll_';&‘y()“l"%{( """ ) (24)

where L, = {;*/b? is the critical distance of Eq. 23 at which the cleavage
becomes strongly noncrystallographic.

Since 7y = 27,, it is seen that the stress necessary to propagate the
crack should increase with the length L of the crack; it should become
notably larger than in a perfect crystal for a crack much larger than the
critical length L., thus a few microns in strongly work-hardened materials.

(b) Grain size. Equation 24 is valid within a grain. When a cleavage
crosses a grain boundary, elementary steps all of the same sign appear
along the line of the boundary. As they are of atomic height (m = 1) and
at atomic distance from each other (I = b), they do not cancel the higher
and less numerous steps present in the previous grain. They lead there-
fore to a large and sudden increase in effective surface tension, of the
order of ymb/l =~ -y. Thus for L > the grain size D,

L\%
’Yefizry()_*"y[l‘i_‘) <L) ] (25)

For fine polycrystals, the stress necessary for propagating a crack should
thus be independent of work hardening

I [ﬁ‘_ﬂfﬁlo_t‘f)] (26)

This equation should be valid for grain sizes smaller than the critical
length L, defined by Eq. 23, thus smaller than 107% cm. The factor 2
comes from the fact that the stress axis is not normal to the many little
cracks that have to be developed.
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Such a law has indeed been observed by Low ¥ on low-carbon steels
at low temperature, when the grain size is small enough for the fracture
to be ductile. From the slope of o vs. D™*%, one can deduce an approxi-
mate value of the surface tension of the steps,

v == 2%,

This is the value of ¥ used in this discussion. It must be pointed out that
other measurements on the ductile fracture of low-carbon steels at low
temperature lead to a relation of the type *

o = 0o+ const D™

where @ is a large constant term. This is analogous to the relations ob-
served for brittle fractures and yield points. It suggests that in those ex-
periments ¢ is the stress necessary to pile up enough dislocations on
grain boundaries to nucleate cracks."”

Stresses Applied to Cracks During Work Hardening

Now that the conditions necessary for the propagation of cracks have
been defined, it seems desirable to show that they can rarely be obtained
during a homogeneous work hardening. The nucleation of the cracks, for
which stress concentrations of some kind are known to be necessary, 1
out of the scope of this chapter. It is not therefore the high local stress
concentrations around piled-up groups of dislocations that are of interest
here, but the average internal stresses produced by work hardening and
their relation to the density of dislocations.

Work Hardening as a Function of the Density of Dislocations

It will be recalled that, in many pure metals when the temperature is
low enough to suppress diffusion phencmena, the stress necessary to pro-
duce a given strain € at a strain rate € is made up of two parts ' (Fig. 11):

(a) A part oo which decreases slowly with increasing temperature in
the same way as the elastic constants (go/u = const).

(b) A part g, which decreases more rapidly with increasing tempera-
ture and disappears above a critical temperature 7. The part 0y in-
creases with the strain € but does not vary with €; o increases wnh €
and €. For given T and €, 07/0d, remains constant when € varies.?

It is thought that o is due to jog formamm, occurring when the sllppmg;
dislocations cut through the “trees” of the forest of screw dislocations,
piercing their glide plane®% The formation of jogs requires move-
ments over distances of atomic dimensions and thus can be helped by
thermal agitation. The fact that oo/ does not vary with temperature
shows that it corresponds to a hardening varying only over distances
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that are large compared with atomic dimensions. As pointed out by
Hirsch,? the constancy of 7/ with varying e suggests that oy is due (o
long-range elastic interactions between the slipping dislocations and the trees.

The possible hardening from such an interaction is somewhat difficult
to estimate. It requires some averaging over the possible natures, orien-

= !q ——

1 Y
0 T(_. i

Fig. 11.  Variation of the flow stress with
temperature in a work-hardened metal.

tations, and lengths of the trees. Reactions can take place between
moving dislocations and trees if they attract each other. Finally, there
is still some discussion as to whether the kinetic energy of the moving
dislocations might help them to overcome these long-range stresses,
Order-of-magnitude estimates lead to 10.36,37

argese 2L @7

where /p-% is the dislocation density and 6 a numerical factor of the order
of 10.

The theory of jog formation leads to an equation

. : ( 2U, — opbdl 1«‘)
€ = const exp [ — L0

where U, is the energy of a jog, d is the width of a dislocation, and where

the constant depends on the geometry of the dislocation arrays and other
factors. From this it follows that

20, T .
= (1 Tr> 28]
where the critical temperature 7', varies logarithmically with ¢ and
d T
----- .. (29)
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Equations 27 and 28 show that, at given temperature and strain rate,
oy and ¢y increase in the same way with increasing strain; this is in
agreement with experiments. As the jog energy 2 is such that 2U,
= ub*d/15, it is seen that o4 should be at most of the same order of mag-
nitude as oo, and this only at low temperatures or very high strain rates.
From Eqs. 27 and 29, it follows that the ratio

€do kT

Ty dé B :l:};@
should be independent of strain. These points are indeed observed %%
and lead, in metals where the dislocation width 4 is known, to values of
¢ of the order of 10. Finally, direct measurements of dislocation den-
sities in work-hardened materials have shown that Eq. 27 is approximately
followed.?

In conclusion, the hardness of a work-hardened material seems to be
due mainly to the long-range elastic interactions of its dislocations and,
therefore, to be inversely proportional to their average distance (Eq.27),
as first pointed out hy Taylor.®
Size of a Griffith Crack in a Work-Hardened Materijal

It will now be shown that the Griffith criterion for a fast crack is prac-
tically the same in work-hardened and perfect crystals, regardless of the
degree of work hardening. Thus the difficulty in developing a ductile
fracture does not come from step formation on the cleavage faces, con-
trary to what is often stated.

In regions where there are no stress concentrations, the stress applied
to a crack is of the order of the external stress, thus, of the hardness.
Equating the hardness o, of Eq. 27 to the stress o of the Griffith criterion,
Eq. 7, and using the effective surface tension, Eq. 29, of work-hardened
materials, one obtains easily for the length L the condition

464 Lb?\ %
L2t ()]

where the term in L*$ comes from the resistance of the steps. A discussion
of this equation of the second order in L' shows that the term in L’% is
negligible if Ip > 6%yo/ub >~ 106. This condition is fulfilled even in
heavily cold-worked materials, where /, < 107% cm =~ 306.

In conclusion, the Griflith criterion for fast cracks in work-hardened
materials reads

(30)

I®
40 = (31)
In heavily cold-worked and thus hard materials, this is not very large:

lp 2 306 leads to L > 3 X 10% ~ 10~ cm.
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Plastic Relaxation

Griftith cracks with L =~ 10~ cm are easily obtained in brittle materials
in regions of some stress concentration: at the grips, where a slip band
or a twin meets the surface, at a grain boundary, or at another slip band
or twin.

In materials with only a few slip systems, the same types of stress concen-
trations are only partially relaxed by slip. They can initiate cracks,
which are not much blunted by plastic relaxation, especially in cases
such as zinc, where the cleavage plane is also the casy slip plane. These
cracks can therefore grow slowly during work hardening until the applied
stress is large enough for them to develop from the regions of stress con-
centration. Monocrystals and polycrystals of such materials are indeed
known to fracture in this way after various degrées of work hardening.

Such brittle cracks do not develop in work-hardened materials with
many slip systems, at least not unless their dislocations have been pinned
down by aging after or during work hardening. The reason is that any
large local stress concentration is plastically relaxed and that any in-
cipient crack is plastically blunted in the way already described. Once
blunted, a crack can propagate again only under a large applied stress
and after enough work hardening such that, according to the Griffith
criterion, Yeir = Yo(l#/b) is not too large; thus after heavy work harden-
ing, {p =~ 10% to 10%.

It is indeed well known that in cubic polycrystalline metals ductile frac-
ture occurs only after the onset of necking, during which the stress con-
centrations increase fast enough. The cracks do not develop from the
regions of stress concentration but multiply until the effective section of
the material is so small that the material breaks by shear. This is the
“fibrous” fracture referred to in the section on ductile cleavage.

Cubic monocrystalline metals also break only after the onset of necking,
but they break often by shearing to a point and without any cleavage.'

In conclusion, it is the plastic relaxation, and not the formation of
steps, that hinders the cleavage of work-hardened materials.

Application to Fatigue Cracks

It seems that fatigue cracks often start from small surface cracks prob-
ably caused by the emergence of two parallel slip bands of opposite
signs 4! on the surface of very strongly deformed grains.

From the preceding discussion, work hardening does not alter sig-
nificantly Griffith’s criterion as stated in Eq. 5: The crack can start
developing under an applied stress o if L > 4uryo/a?, that is, when L is
a few 10-3% ¢m for the usual values of . Once started, the crack must
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travel fast or be stopped by plastic relaxation. Once stopped, it blunts
and should start again only when work hardening at the tip of the crack
has decreased the size lp of the dislocation network sufficiently. It is
more likely to branch at a point where, for instance, the crack has been
cut by a slip band developed in later cycles. All these aspects indeed
seem characteristic of fatigue cracks.

Comparison Between Cleavage, Slip, and Twinning

A cleavage crack, a slip band, and a twin lamella 22 can all be de-
scribed as a suitable piling-up of dislocations; the state of strain and
stress around them varies similarly with distance and orientation. They
give rise to the same possibility of plastic relaxation, with a “cloud” of
relaxing dislocation loops and a blunting which stabilizes them.

In a work-hardened material, resistance occurs in all three cases from
the long-range internal stresses and from the short-range interactions
with the dislocations piercing their plane. However, differences arise
in the detailed mechanisms involved.

Long-Range Internal Stresses

As pointed out carlier, these stresses are too small and too short in
wavelength to give rise to any significant resistance to a piled-up group
of dislocations; but they do, however, hinder the slipping of new dis-
locations emitted by a Frank-Read source during the formation of a slip
band or a twin. These dislocations are well separated before they
join the piled-up group, so they do not help each other very much in
their movement. Thus, in work-hardened materials, the thickening of
these two types of bands is usually stopped by the internal stresses result-
ing from the cold-work. No such resistance to thickening occurs for
cleavage cracks. This is because the cracks can be seen as a continuous
distribution of infinitesimal dislocations whose mutual repulsions help
them to overcome the internal stresses, even when they are far from the
tip of the crack.

Jogs and Steps

In slip, the geometrical equivalent of the crystallographic cleavage
steps of Fig. 3b is the slip of a jog along its glide plane. The equivalent
of a noncrystallographic jog (Fig. 3a) is the climb of a jog together with
the creation of a row of vacancies or interstitials. It is usually thought
that, for a jog, slip requires much less energy than climb.?22 Thus, once
formed, jogs should slip without increasing the resistance very much,
but their formation produces a noticeable and temperature-dependent
resistance. This is contrary to the cleavage steps, which provide only a
small temperature-independent resistance to the tip of a crack.
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DISCUSSION

F. A. McCriNtock, Massachusetts Institute of Technology. It is interest-
ing to contrast some of the results obtained by Friedel from dislocation
theory with results obtained from plasticity theory applied to a continuum
and with observations on a macroscopic scale. To be sure, agreement is
not necessarily expected, for one can no more apply the equations for
the motion of individual dislocations to regions large compared to the
length of slip lines than one can apply classical plasticity to the processes
that dominate in regions of the order of the length of slip lines.

As regards the extent of the plastic zone, Friedel’s Eq. 20 indicates that
the radius of the plastic zone should vary linearly with the applied stress
level. In the case of longitudinal shear, however, it has been found that
the radius varies as the square of the applied stress at low levels of stress,
and even more rapidly as the yield point is approached.}

In cracks subjected to longitudinal shear, blunting would not he ex-
pected. Instead, plasticity analysis and experiments on 7075 T-6 alumi-
num alloy * both show that cracks are initially stable and grow slowly
with increasing stress, later becoming unstable and accelerating. 1In the
case of cracks under tension, an elastic-plastic analysis is not available,
but experiments on aluminum foil,' as well as unpublished tests on the
7075 T-6 aluminum alloy, show that here also cracks can at first grow
slowly and steadily, remaining sharp as far as can be judged by a low-
power microscope and becoming unstable only later on. Thus in some
cases, at least, cracks will not necessarily become blunted and stop when
their velocity becomes appreciably smaller than the sound velocity. On
the contrary, plastic deformation around a crack may sometimes lead to
a slow, stable fracture under increasing load, which becomes unstable
only after a certain stage has heen reached.
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