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ABSTRACT

Detailed examination of the Cottrell mechanism of crack initiation in
body-centered cubic crystals indicates that dissociation of the resultant
dislocation is easier than crack formation. Grain boundaries and twin
boundaries may provide barriers strong enough to enable crack nuclea-
tion to occur.

Introduction

In considering the initiation of a crack in the body-centered cubic
structure, Cottrell ' has suggested that the formation of dislocations with
Burgers vectors a{001] is important. Such dislocations can be formed
by the combination of two ordinary slip dislocations; thus a dislocation
with Burgers vector 1a[111]in the (101) slip plane and a dislocation with
Burgers vector $a[111] in the (101) slip plane (Fig. 1) can combine to
give

1a[111] + 3a[111] — a[001] (1)

This reaction results in a net decrease in energy and so should readily
occur. The final dislocation, 4001}, lies along the [010] direction and so
is a pure ecdge with slip plane (100).

The above process is somewhat similar to the formation of a Cottrell-
Lomer sessile dislocation in the face-centered cubic structure; but in
the present case the dislocation formed is not sessile and so should glide
under a suitable stress. Slip corresponding to the motion of a [001]
dislocation is not, however, observed, and we conclude that the Peierls
force must be particularly large for these dislocations.

Cottrell has also suggested that such [001] dislocations can act as bar-
riers in the slip plane against which other dislocations can pile up. At
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first it seems surprising that a dislocation which is not sessile will remain
in a fixed position in spite of the concentrated stress at the head of the
piled-up group. However, when we examine the nature of these stresses,
we find that they do not tend to move the [001] dislocation. For example,
consider a single dislocation and take co-ordinates such that the z-axis
is along the dislocation line, and y = 0 is the slip plane. Then at any
point in y = 0, the stress components 0., and 7, owing to the dislocation
are zero. (This result, which is a familiar one for isotropic materials,

(100)

a[001]

Fig. 1. Two slip dislocations combining to

form a dislocation with Burgers vector 2[001],
remains true when, as in the present case, we have cubic symmetry, )
It then follows, by a simple transformation of co-ordinates, that the shear
stress on any plane meeting y = 0 at 45° is zero. Now applying this
result to the case shown in Fig. 1, we see that the dislocations piled up
in (101) (or equivalently in (101)) do not produce any shear stress on
the slip plane of the [001] dislocation and so have no tendency to move
it. Thus this dislocation will be acted on only by the applied stress and
the stresses resulting from dislocations other than those in the piled-up
8roup; against such stresses, the large Peierls force, which we have al-
ready had to assume, will be sufficient to prevent its moving. Accordingly,
the dislocation will be a good barrier, and we may expect that it will
play a part in the work hardening of body-centered cubic metals similar
to that played by Cottrell-Lomer sessiles in the face-centered cubic.
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For sufficiently large piled-up groups, there remains the possibility of
dissociation by the occurrence of the reverse of Reaction 1. The con-
ditions under which this happens could be determined by the method used
by Stroh? to investigate the dissociation of the Cottrell-Lomer sessile.
However, we shall only consider here whether or not dissociation will
occur before the piled-up group has grown large enough to 4nitiate a
crack.

Single Piled-Up Group

The dislocations may be piled up either in both the (101) and the (101)
slip planes, or in only one of these planes. We consider first the simpler
case in which they are piled up in a single plane, for example, the (101)
plane.

To form a crack, the dislocations at the head of the piled-up group
must be forced so close together that they form a single dislocation of
large Burgers vector; when the Burgers vector has grown sufficiently
large, the dislocation will become cracked. Caleulations on a simplified
model ? indicate that the most difficult stage in this process is to combine
the first two dislocations, and so we need consider only this stage.

. . l e L
A B
Fig. 2. A group of dislocations piled up at an [001] disloca-
tion 4.

The force of repulsion between ‘the a[001] dislocation 4 at the head of
the piled-up group and the 4a[111] dislocation B nearest it (Fig. 2) is

Fi = Ga*/4w(1 — v)r (2)

where 7 is the distance between the dislocations, G is the shear modulus,
and » is Poisson’s ratio. When the dislocation [001] dissociates by the
reverse of Eq. 1, the force between its components tending to reunite
them is Ga®/8wr. This force acts along the line joining these two dis-
locations. If, on dissociation, each is displaced the same distance, this
force makes an angle of 45° with the slip plane; hence its component
parallel to the slip plane is

Fy = Ga®/8V'2 1y (3)

Comparing the forces for the same distance r between the dislocations
and taking v = §, we obtain

FifFy=2V2/(1-p) =42 4)



120 A. N. STROH

In finding these forces we have used linear elastic theory which will
certainly not be correct at very small distances. In fact, both /) and F»
will have been overestimated, but the value of their ratio (Eq. 4) should
be better than that of either of the forces separately.

Next we must consider what forces will occur in the piled-up group.
Suppose that the dislocations other than 4 and B (Fig. 2) and the applied
stress together produce a force Fs on 4 and F on B. Since the distance
hetween A and B is small compared with the distance of either one from
any other dislocation, we have approximately 4 = I'g.  (In the case in
which 4 and B have the same Burgers vector, we find from the calcula-
tions of Eshelby, Frank, and Nabarro * that Fy = 0.84 Fy; the difference
between this exact relation and the approximate relation Fu = Fg is
unimportant for the present application.) Since-B is in equilibrium under
the force Fz and the repulsion F; owing to A4, we must have Iy = I
The force that 4 has to withstand is then

Fy+ Fau = Fy+ Fp > 2Fg

Thus the force tending to dissociate 4 is about twice the force tending to
coalesce A4 and B and so to nucleate a crack. Combining this with Eq. 4,
we see that to nucleate a crack would require a piled-up group about
eight times as strong as the greatest the [001] dislocation can withstand.
While this factor is admittedly subject to corrections because of nonlinear
effects, it is difficult to believe that these corrections can be so great as to
alter the conclusion that the [001] dislocation does not provide a strong
enough barrier for fracture.

Two Piled-Up Groups

We reach a similar conclusion if the dislocations are piled up in both
slip planes meeting the [001] dislocation. We may assume the two
piled-up groups to be of equal strength, since the general case will be
intermediate between this and that of a single piled-up group. Dislo-
cations from each slip plane will now coalesce with the leading dislocation
simultaneously. Since the 3a[111] and %a[ll—l] dislocations attract, the
process is a little easier than before, and, allowing for this attraction,
we find that Eq. 2 must be replaced by

J Gef 1 1
YT 4m\1 -y 4

Hence, with » = 4, the ratio

]"]/["2 = 3.5 (C’)
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On the other hand, the [001] dislocation is even more likely to disso-
ciate because it now has to withstand two piled-up groups. A simple
treatment such as was used previously shows that the force tending to
dissociate the dislocation is more than three times that tending to coalesce
the next dislocations with it. Combining this with Eq. 5, we find that
now the piled-up group needed for fracture is ten times larger than the
[001] dislocation can withstand, a result even more unfavorable for frac-
ture than the previous case.

Discussion

The estimates just made of the strength of the [001] dislocation apply
strictly only near the absolute zero, for the effect of thermal fluctuations
has been neglected. Since thermal fluctuation can help appreciably the
dissociation of a Cottrell-Lomer sessile dislocation which at 100°K may
have only half the strength it has at 0°K,? a similar effect may be ex-
pected in the present case. On the other hand, it seems unlikely that ther-
mal fluctuations can make crack nucleation much easier. Thus at any
finite temp-rature, the [001] dislocation will prove an even less effective
barrier.

The only barriers strong enough for crack nucleation appear to be
grain boundaries and twin boundaries. Here there is the possibility of
their giving way by the nucleation of slip in the perfect lattice. If we
attempt to use the method of this paper to decide whether this is likely,
we are led to no very definite conclusion. For if a pair of edge disloca-
tions %a[111] and 14[111] are formed, they must be separated against
their mutual attraction, which is a force

Fy = 3a2G/8w(1 — v)r

Hence from Eq. 2, the ratio of the forces for crack nucleation and slip
nucleation is

Fi/Fs=% (6)
Across a grain boundary, the shear stress on the most favorable slip plane
will be less than the maximum shear stress by a factor depending on the
change in orientation across the boundary. For a large-angle grain
houndary, this factor may be of the order of &; that is, the stress tending
to nucleate slip will be about half the stress on the leading dislocation A
(Fig. 2). The stress will therefore be about the same as that tending to
combine B with A. Combining this result with Eq. 6, we find that a
crack should occur a little more easily than does slip in the perfect lattice.
The two processes are of so nearly equal difficulty, however, that non-
linear effects are likely to be all-important here. Nevertheless, the cal-
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culation does illustrate the great strength of a grain boundary as compared
to a dislocation lock.

The experimental work of Biggs and Pratt ® supports the idea that a
twin boundary forms a suitable obstacle to slip for the nucleation of a
crack, and they conclude that, in single crystals of iron, cracks are formed
by dislocations piling up against twin boundaries.
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