II Cleavage; Ductility, and
Ten_acity in Crystals

JOHN ]J. GILMAN

General Electric Research Laboratory

Schenectady, New York

ABSTRACT

This chapter is a review of the state of our present knowledge about
cleavage as a mechanical process. In addition to being a review, it
includes new experimental results and ideas about cleavage and cleavage
resistance.

Rules that are useful in the practical art of cleavage are given, and
the mechanics of cleavage is developed. An equation of motion for
cleavage cracks is derived, as well as equations relating surface energy
to the forces required for cleavage. Results of a photoelastic study of the
stress distributions around cleavage cracks are described.

A simple theory that can be used to estimate the anisotropic surface
energies of crystals is given and is used successfully to predict surface
energies and cleavage planes.

It is pointed out that terminal crack velocities are limited to values
less than sound velocity by inertia and that experiments agree with theory.

Processes that absorb and release energy during crack propagation are
discussed.  Cleavage steps, clectrical discharges, anelastic effects, and
plastic deformation all absorb energy from moving cracks. Plastic defor-
mation is usually the most important of these processes, and a relation
is derived for estimating the magnitude of its effect. Energy may be
released to a moving crack by chemical effects and by intersections with
centers of internal stress, such as dislocations and point defects.

A parameter called the tenacity of a crystal is defined. It is a measure
of the resistance of a crystal to cleavage or ductility. In addition to the
surface energy of a crystal, the tenacity depends on such things as the
dislocation mobility in a crystal.

It is pointed out that the brittleness of ionic crystals may be an intrinsic
characteristic because electrostatic faults are produced in them when
plastic low occurs at the tips of cracks. These faults tend to suppress
stress relaxation at crack tips.
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Introduction

Cleavage is a fascinating natural phenomenon that is also the funda-
mental process in the final failure of many engineering materials. It is
resistance to cleavage that determines the ductility of a crystalline material.
Furthermore, cleavage provides a simple and relatively controlled means
for creating fresh surfaces. Therefore, it can be used to measure surface
energies. For this purpose, it is more straightforward and, hence, more
reliable than most other methods. Finally, cleavage is an excellent
method for shaping crystals because none of the material is wasted as
cutting chips.

In spite of the importance of cleavage, it has received relatively little
study as a mechanical process. Some of the questions that arise are the
following:

How much force is required to cause a crystal to cleave?

What determines how fast a cleavage crack moves?

Nhy are cleavage surfaces sometimes rough and sometimes smooth

in crystals of the same chemical composition?

4. What determines the crystallographic planes on which cleavage
occurs most easily?

5. How can cleavage resistance {(hence ductility) be increased or
decreased?

6. Why do some crystals cleave easily while others do not?

0 B =

This chapter discusses our present knowledge of the answers to these ques-
tions. Some of the answers seem to be quite good, but others are not
completely satisfying as yet. The topics that are considered are the
practical art of cleavage, cleavage mechanics, cleavage planes, speed of
cleavage cracks, energy absorption and release during cleavage, ductility,

and tenacity.

The Practical Art of Cleavage

Many a crystal has been mutilated in an attempt to cleave it. However,
through experience gained in the course of cleaving a few thousand
crystals, the author and his colleague, W. G. Johnston, have gradually
acquired a set of guiding principles. The use of these principles does
not remove all of the art from the practice of cleavage, but they do give
considerable help.

Proper hammers and chisels are essential for the best results. The
hammer should have a ball head, so that the blow struck on the chisel
is always perpendicular to the struck surface. The chisel must he harder
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than the crystal being cleaved, and the harder the better, provided a
small amount of toughness is retained. Thus, tool steels make better
chisels than plain carbon steels. A good chisel material for many pur-
poses is hardened high-speed steel, tempered to a hardness of about
62 Re. In addition to hardness, the acute angle of the tip is an important
feature of a chisel. If the angle is too small, the tip will tend to buckle
and chip; if the angle is too large, the chisel will tend to crush the crystal
without wedging it open. A good compromise angle seems to be about
30°. For crystals that cleave readily, such as LiF and KCl, a chisel
with a straight knife-edge is satistactory. More resistant crystals like
calcite and MgO can be cleaved better with a chisel whose knife-edge
has convex curvature. The curved edge makes it possible to start the
cleavage crack at the center of a surface rather than at an edge, thereby
reclucing chipping.

Specimens of specific size can be cleaved readily if guide lines are first
seribed onto a surface of the crystal. This can be done conveniently with
a machinist’s vernier layout tool that can be set to 0.001 in. The cleavage
chisel will readily settle into the centers of the scribed lines so that speci-
mens can be cleaved within tolerances of about +0.001 in.

The most important factor in good cleavage practice is the strategy of
placing the cuts. Good strategy allows crystal slabs as thin as 0.010 in.
to be cleaved perfectly and minimizes the damage that occurs in larger
crystals. There are essentially two starting shapes (blocks and rods) that
require somewhat different strategies. They will be considered in turn.

Blocks. Tt is usually desired to cut either thin plates or slender rods
from the initial block. This is best done by always making cuts that
bisect an existing crystal. It is usually foolhardy to try to cut a thin
plate from a thick block or a thin rod from a thicker but slender rod.
In fact, the more slender the rod, the more essential it is to use only cuts
that bisect the existing rod. The “hisection rule” means that it is always
best to plan to cut a block into 2" parts where 7 is an integer. If a crystal
is not too slender, it is often possible to cut one third from it, but attempts
to cut small fractions from an existing crystal will usually fail.

Rods. A common problem is that of shortening a slender rod. Instead
of trying to do this with one cut, it is often better to cleave thin pieces
off one end of the rod until the desired length is reached.

The reason why bisection is so important in cleavage lies in the stress
distribution. As we shall see later, the maximum tensile stress does not
lie in the plane of a cleavage crack but off to either side of it. It is only
the anisotropy of the strength of the crystal that makes a cleavage crack
proceed along a plane curface. In the case of bisection, the angle be-
tween the plane of the crack and the plane of maximum tensile stress is



196 OHN J. GILMAN
J

smaller than it would be if a thin piece were being cleaved from a thicker
one. Therefore, unless the strength anisotropy of the crystal is very large,
good cleavage is most likely to occur if a crystal is bisected. If the
anisotropy is zero (as it is for glass and plastics), a material cannot be
cleaved along a plane surface by the ordinary method.

Crystals are often very difficult to cleave if their surfaces are not
orthogonal to the chisel and cleavage crack. Calcite is a good example.
Attempts to cleave natural rhombs of calcite by simply placing them on a
flat surface and hitting them with the chisel are almost sure to fail. On
the other hand, if surfaces are cut or ground onto a calcite crystal parallel
and perpendicular to the proposed cleavage plane, this material can be
cleaved as readily as rock salt. The purpose of using perpendicular faces
is to make the stress distribution symmetric in the crystal. This keeps the
maximum tensile stress nearest to the plane of the crack. In crystals
such as calcite, a single cleavage plane is not highly preferred; hence,
cracks tend to wander from one plane to another unless a favorable stress
distribution is provided so that their small-strength anisotropy can keep
a crack moving in its own plane.

The support of long crystals and stubby blocks during cleavage is
important. The ends farthest from the cleavage chisel should not be
restrained from rotating away from the chisel. This is easily accom-
plished by placing fulecrums under the side opposite the place where the
chisel is applied to the crystal.

The blow that is struck on the chisel should be sharp but not too heavy.
Otherwise, compressive waves will be generated, which will travel down
the crystal ahead of the crack and, after reflection from the end of the
crystal, will travel back to the crack tip and interfere with the stresses
there. The result may be the generation of cracks perpendicular to the
primary crack.

The Mechanics of Cleavage

The energy balance treatment of fracture that was originated by
Griffith ! is the basis of this discussion of cleavage mechanics. Parts of
the discussion have been given previously by Obreimov * and Benbow
and Roesler,? but new features are presented here concerning the motion
of cleavage cracks. The energy balance method is a suitable approxima-
tion because Orowan * has shown that it yvields essentially the same result
as an analysis of the stresses at the tip of a crack.

Figure 1 is a schematic drawing of a crystal that is undergoing cleavage.
We assume the crystal to be homogeneous and isotropic and to have a
distinct cleavage plane. Each “arm” that is separated from its mate by
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Fig. 1. Schematic cleavage of a crystal.

the crack has a length L and is treated as a cantilever beam built in at
one end. The force /' causes a bending moment M(x) that has a dis-
tribution along the length of the beam:

Mx)=FL—-x), 0<x<L (1)

According to simple beam theory, this bending moment puts an amount
of strain energy U into the beam:

- 1 £ Ly . [ji{J_i 2
U= 5p [ M) d = oo 2)

where 7 = moment of inertia of cross section = wt*/12. The deflection
of the beam at the place of application of the force is obtained by applying
Castigliano’s theorem:

Al | FL?

50=6F|I=L=3‘EI; (3)

If this is substituted into Eq. 2, the strain energy is obtained in terms

of the deflection:
o < 3EB
TE

(4)

The surface energy S of one side of the crack is equal to the specific
surface energy <y times the area that has been exposed:

S =vyLlw (5)

As Mott first pointed out,® if the crack is moving with velocity #., the
beam also has some kinetic energy 77 owing to its motion in the y-di-
rection.  Since the velocity in the j-direction is d8/dt, the kinetic
energy is
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From simple beam theory:*

P (é{"f ¥
TEIN2 76
df _ 95 (dx\ _ @éwzcﬁ’(L._ff
T e \dt) T e T EINTTT 2

PN AN R
= 5 (F[>,/n (Lx 2) dx

Remembering that the velocity of longitudinal sound waves is v.> = E/p,

we have
g wt foe L Y A
T=1 (”) Fol

In terms of the strain energy,

.24 L\? (v.\* s
r=% L([) (U> ©)

‘Thus for high velocities and long cracks, the kinetic energy is an ap-
preciable fraction of the total strain energy.

Next, we obtain the equation of motion of the crack for the case of a
constant applied force at x = L. In this case the total energy H is

H=S8+ T+ U~ Foy(L) (7)

Now,

then,

where I8, is the work done by the applied force as the crack moves
along. This work is F*L}/3El = 2U, so we have

H=S-U+T
_ L_F_‘L_ﬁ,.%‘i(_f;? oc\* F2L
=Yl = TEr T 5 \t) \o.) 6EI

= AL — BL? + Cv*L?

where
A=vw
F2
B=CEr

., 24( B
«= 5 (t%ﬁ)

¥ There is additional deflection owing to shear, but since it is o £8(¢/L)%, it is

usually negligible.
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The potential energy is P=S8§— U= AL — BL?, so the Lagrangian is
& =T~ P = Co2l> — AL + BL?. Substituting into Lagrange’s equation

of motion:
d (Qé“) _%_y
do. oL
we have
2Ca L? -+ 5Co LA+ 4 — 3BL? =
where «, is the crack acceleration.

The Griffith condition for the beginning of crack motion states that the
surface energy of the crack must be provided by the strain energy and
the work done by the applied force, W = F8,. That is,

as dU | dW

dL =~ 4L ' dL

or
S=U
This defines the critical crack length L* at which motion begins:
4
L* =+
B
In terms of this critical length, the equation of motion may be written:
50  5t%,? 1 /L*\? ~
1o+ 5o === 1=z () | =0 8
ot 5L T Tes T 3\L ®)

When L = L* and the crack is at rest, a, = 0, as would be expected.
For L large compared with the critical value L * the crack velocity reaches
a steady value (that is, a. = 0) if

1/t

PRI £.4 TR 9
T V2 (L>a ©)

Thus, the terminal velocity is limited by the crack length and the speci-
men thickness as well as by the sound velocity. This is unlike the case
of an infinite body where only the sound velocity determines the terminal
crack velocity. It means that cracks can never move extremely fast in
long slender bars.

Another feature of cleavage specimens is that the stresses at the tip of
the crack are independent of the crack length when the crack is just
beginning to move. It results from the fact that the bending moment
at the crack tip is M = FL, and when the crack begins to move, S=1U.
This latter relation gives

F = /1Rl (10)

L

so that o
M = VéywEI (11)
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The bending moment is independent of L. Since the local bending mo-
ment determines the local stresses, the stresses are also independent of L.
This makes cleavage-type specimens especially good for studies of crack
propagation.

It may be noted that no consideration of the concentrated stresses near
the tip of a cleavage crack is given in the above discussion. This is
Justified for the case of cleavage cracks because their speed is determined
by the inertias of the “arms” of a cleavage specimen and not inertial
effects near the crack tip. Therefore, since the crack velocity never
becomes a large fraction of the speed of sound, relativistic effects are not
important.

The forces that resist cleavage of a crystal are provided by its surface
energy. This is defined in this case as the energy that is needed to pull
apart two adjacent lattice planes of the crystal from their equilibrium
separation distance dp to infinity. Thus, if the law of attraction of the
surfaces is F( ), then the surface energy is

y=1 f F(3) dy (12)
-~ lin

The surface energy can be measured by one of two methods. FEither
the force that is needed to cause a crack to advance or the width of the
crack 20 can be measured at a known distance from a crack tip at the
instant when the crack begins to advance. From the Griffith condition,
S = U, and Egs. 2, 3, and 5, equations for 7y can be obtained in the two
cases:

i o .

= 6[F[w (in terms of the force) (13)
EIL? [Lxr a3\ .

Y = e <—2~ — Z) (in terms of deflection) (14)

Determination of the surface energy through the applied force has the
advantage that Eq. 13 holds even when cleavage is not completely
elastic. The applied force is transmitted to the crack tip by the elasticity
of the two “arms” of the crystal, so its magnitude is independent of any
inelastic deformation that occurs. The use of the deflections to determine
7Y is subject to large errors if the deflections are not completely elastic.
However, the deflection method has the advantage of accuracy (inter-
ference fringes formed from the two crack surfaces can be used to measure
the deflections), and it is convenient to use for fast-moving cracks.
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Stresses at Cleavage Cracks

No analytic description of the stresses at the tip of a cleavage crack
exists at present. However, a photoelastic study has been made by
Guernsey and Gilman,’ and some of their results are shown in Fig. 2q,
in which the maximum tensile stresses are shown. Very near the crack
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Fig. 2. Comparison of contours of maximum tensile stress. (a) Cleavage crack.
(After Guernsey and Gilman.®) (b} Crack in infinite plate. (After Irwin.”)

tip, the stresses are proportional to 1/ V1 (r is the distance from the crack
tip), just as in the case of a crack in an infinite body. At larger distances
the stresses diminish more rapidly than this because they must become
equal to zero at the bounding surfaces of the cleavage specimen.

The tensile stress distribution near the tip of a crack in an infinite plate
is shown in Fig. 256 (Irwin7). Comparison with the distribution for a
cleavage crack (Fig. 2a) shows that the chief qualitative difference be-
tween the two distributions is the position of the steepest gradient of the
maximum tensile stress (closest spacing of the contour lines). For a
crack in an infinite body, this gradient is coincident with the plane of the
crack; but for a cleavage-type crack, it lies in a direction nearly per-
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pendicular to the plane of the crack. The reason for the difference is,
of course, the fact that a bending moment is present in the latter case
but not in the former. Since cracks tend to run in the direction of the
steepest gradient of the maximum tensile stress, a cleavage-type crack
in an isotropic body will not run straight but will veer out of its own plane
and run out the side of the specimen. The anisotropy of the cleavage
strength of crystals makes it possible to obtain straight plane cleavages.

The Cleavage Plane

Several criteria have been proposed for predicting or rationalizing the
observed cleavage planes of crystals. Fivst, Hauy suggested that the unit
cells of crystals are bounded by cleavage planes; this fails for fuorite.
Then Tutton stated that the cleavage planes of a crystal are its most
closely packed planes,® but this criterion fails for such crystals as zinc
blende (ZnS), fluorite (CaFy), and calcite (CaCOy). Next Huggins?
discussed the criterion that the cleavage plane is the plane that cuts a
miniraum number of chemical bonds per unit of area (consistent with
the condition that the cleavage surfaces must be neutral). The discussion
was continued by Wooster * and in some detail by Shappell.® This
bond-density criterion suffers because of the rather vague meaning of
“chermical bond,” especially in the case of ionic crystals.  Stepanov
argued that the anisotropy of elastic constants determines the cleavage
plane of a crystal. Others have argued that the plane of minimum sur-
face energy should be the cleavage plane.

This last criterion seems to be the best one, although there is some
evidence that it may not apply for body-centered cubic crystals like iron
and tungsten. Some experiments ' and calculations 18 indicate that the
(110) planes have lower energies than (100) planes in these crystals, yet
they prefer to cleave on (100) planes. On the other hand, tantalum
and vanadium ¥ prefer to cleave on (110) planes, which is the expected
behavior. All of these results for b.c.c. metals are subject to some doubt
because the metals have not been completely pure. In fact, in the case
of vanadium, no cleavage occurs in the absence of hydrogen, and oxygen
is required for cleavage in tantalum.

It is suggested here that a mechanical criterion for the cleavage plane
might be best. This would state that the observed cleavage plane should
be the one that requires the least force to propagate a cleavage crack
along it. From Eq. 9, we see that the material constants that determine
how much force is required for cleavage are the elastic modulus £ and
the surface energy 7.

The elastic moduli for many crystals are known, but very few measure-
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ments of surface energies have been made, and virtually no measurements
have been made of the anisotropies of surface energies. Therefore calcu-
lated estimates must be used. Detailed calculations have been made
only for the alkali halides,'® so we use a simple estimate. It is assumed
that the attractive stress o(y) between two surfaces can be approximated
by a sine function:

, .my

O-(V) = g SIn —=? 0 S y § a

7 a
where a is the “range” or relaxation distance of the attractive forces. For
small displacements, the attractive stress should obey Hooke’s law, and

™.

gin —= o~ —=

a

g=FE (}’_) = 0 (ZQ{) (y < a)
Jo, a

where yo is the equilibrium lattice constant perpendicular to the plane.
Thus, oy is determined, and the attractive stress becomes

Therefore,

ol =2 53 T (15)

Substituting this into Eq. 12 gives

_ ka . fmy
Y = S0 ‘/0 mn(a)dy

E(a)"" R
S & 16
ol (1o)

Equation 16 indicates that the cleavage planes should be those with
minimum elastic stiffness normal to themselves, maximum separation
distance, and minimum relaxation distance for the attractive forces be-
rween them. This latter distance is taken to be the diameter of the atoms
in the cleavage surface, measured parallel to the surface. This is not true
for nonneutral cleavage surfaces in ionic crystals, because the Coulombic
attractions between such charged planes have very long ranges. There-
fore, their surface energies are very high, and such planes are not con-
sidered to be possible cleavage planes.

Calculations based on Eq. 16 are given in Table 1. 1t may be seen
that the equation predicts not only the correct magnitude of the surface
energy, wherever measured values are available, but also the correct
anisotropy in most cases. The correct cleavage plane is also predicted
with the exception of the potassium halides, tungsten, and beryllium.
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Compared with Observed Cleavage Planes

204 JOHN J. GILMAN
TABLE 1. Calculated Surface Energies of Crystals
Young's Moduli Lattice Spacings of Possible
Crystal | Structure (10" dynes/cm?) Constant | ap Cleavage Planes
@ ;
Ewo Eu Em Y100 Juo |
MgO | rock salt 24.5 30.8 33.7 2.10 1.05 2101 148 *
LiF rock salt 7.351 10.8 12.8 2.00 1.00 2.00 | 1.41 *
NaCl | rock salt 4.37 3.45 3.22 2.81 1.40 2811199 *
NaBr | rock salt 3.48 2.72 2.53 2.97 1.48 297210 *
KCl rock salt 4.80 2.30 2.00 3.14 1.57 3.14.12.22 *
KBr rock salt 3.70 2.15 1.88 3.29 1.64 3291232 *
KI rock salt 2.55 1.31 1.56 3.53 1.76 3531249 *
PbS rock salt 8.34 4.1 3.5 2.98 1.49 298|210} *
AgCl | rock salt 3.21 2.2 2.06 2.87 1.43 2.871203 *
AgBr | rock salt 3.29 2.02 1.79 2.77 1.38 2771196 *
CaF, | fluorite 14.1 10.1 9.2 5.45 1.36 * * 11.56
ZnS zinc blende 4.88 7.4 8.9 5.43 0.96 * 1.92 *
InS zinc blende 4.14 6.2 7.5 6.45 1.14 * 228 *
Glass 45. 0.8 | > 1.6
Ge diamond 10.2 13.7 15.5 - 5.66 1.23 1.41 1 2.00 | 3.26
Si diamond 13.1 17.5 19.9 5.42 1.17 1.35 | 1.91 | 3.12
(@] diamond 105.0 | 116.0 | 120.0 3.57 0.77 0.89 | 1.26 | 2.06
w b.c.c. 38.9 38.9 | 38.9 2.87 1.24 1.58 | 2.23 { 0.91
a-Fe | b.c.c. 13.2 22.2 28.4 3.16 1.37 1.4312.020.83
Na b.c.c. 0.21 0.55 1.41 4.29 1.85 2.1413.031.24
Cu fc.c. 6.67 | 13.1 19.4 3.62 1.28 1.81(2.56 | 1.04
Epom Eigio _Yooot Jiowo
Be h.c.p. 29.7 26.6 2.29,3.58 | 1.11 1.80 | 1.98
Zn h.c.p. 12.5 10.9 2.66, 4.93 | 1.33 2.46 | 2.30
Cd h.c.p. 2.8 8.1 2.98, 5.62 | 1.49 2.8112.58
C graphite 1.8 | 113.0 s 0.71 3.4 | 246
Te selenium 2.06 4.28 4.5, 591244 1.73 | 3.86

Surface Energies
s fac\2 ci Plane Surface ‘Energy
nkt f @o “leavage cora /o2
Yikr = —— <~> (ergs/cm?)
Jhkl \T
Y100 Y10 Y1 | Observed | Predicted Expcrimcmali Theoretical | Reference
1310 | 2330 * 100 Yes e 1362 17
374 780 * 100 Yes |  — 700, 169 18,19
310 345 % 100 Yes 330 77-188 17,20-24
248 288 * 100 Yes — 76-177 17,24
318 271 * 100 No — 56-163 17,24
306 253 * 100 No — 54-151 17,24
233 165 * 100 No —_ 58-136 17,24
625 440 ¥ 100 No — b
230 230 — — — — —
230 200 -— — — — —
* * 1100 111 Yes — =
* 360 * 110 Yes —— —_
* 359 * 110 Yes — ==
< 1820 1214 — 25
1110 | 1050 | 726 111 Yes — e
1350 | 1270 | 887 111 Yes —_ 1232 26
7050 | 5500 | 3500 111 Yes — | 5650 13, 27, 28
4680 | 3320 | 8130 100 No — | 2680,5510 | 13,29
1440 | 1710 | 5340 100 Yes — 1450, 1600 | 29, 30
33 63 389 — 94-190 29, 31-33
590 820 | 2980 1100, 1370 500-1210 | 29-35
7Y o001 Y1010
2060 | 1680 0001 No — s
185 850 0001 Yes — 600, 772 29,35
226 730 — 546, 800 29,35
27 | 2340 0001 Yes o .
720 670 1010 Yes . i

* Nonneutral planes

For these exceptions, there are several possible interpretations: (a) Equa-
tion 16 is a poor approximation; (b) surface energy does not control
the cleavage; (¢) the observed cleavage planes result from some impurity
effect; (d) the measurements of the elastic constants are in error. The
last possibility seems quite reasonable for the case of the potassium halides
because they are very soft crystals.

The Speed of Cleavage

Although measurements of crack velocities have been made for many
engineering materials, LiF is the only ¢rystal for which measured values
of cleavage crack velocities are available.*® The terminal velocity for
cleavage cracks in LiF was determined and is compared with theory
in Fig. 3 (along with data for other materials).
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The fastest cleavage cracks are short ones, so the theory of crack propa-
gation in infinite bodies is more appropriate to terminal velocities than
Eq. 9. The theory of Roberts and Wells ¥ predicts that the limiting

velocity for this case should be 0.38V'E/p, and Stroh * has pointed out
that cracks resemble surface waves and so should not be able to move

faster than about 0.94VG/p (the Rayleigh surface-wave velocity). These

00—y T T T T L T T GR DT
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Data from Roberts and Wells;
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Fig. 3. Terminal velocities of cracks. (After Gilman, Knudsen, and Walsh.3)

predictions are almost numerically equal. The former one is compared
with experiments in Fig. 3, and it may be seen that the theory agrees with
experiments fairly well for polycrystals, high-polymeric bodies, and in
one case, for a monocrystal (LiF). Therefore, it is confirmed that inertial
effects limit crack speeds, and the theory is essentially correct.

Energy Absorption During Cleavage

In ideal or ““elastic” cleavage, the work that is done by the applied
forces F is all converted into true surface energy. However, in most real
crystals, the work is absorbed by a variety of processes, in addition to the
creation of new surfaces. These include plastic deformation, anelastic
effects, electrical effects, and the formation of cleavage steps. In order
to take these factors into account, we define an effective surface energy
ve, called the “cleavage surface energy.” It is the sum of the true
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surface energy 7y and the energies of other absorbing processes. We
consider these additional processes in turn.

Cleavage Steps

Surface roughness can arise during cleavage in several ways. If a
cleavage crack is not started strictly parallel to the crystallographic cleav-
age plane, it will become segmented in order to maximize the fraction
of its surface that does lic parallel to the preferred plane. Also, if one
crystallographic plane is not substantially preferred over the others, a
cleavage crack will tend to wander from one plane to another. This
happens in calcite and in iron, for example. If a crystal contains sub-
grain boundaries of the twist type, a crack cannot pass through the
crystal without becoming segmented as it passes through the twist
boundary. Finally, when cracks pass through the screw components of
dislocation lines, the cracks acquire cleavage steps (Fig. 4). The screw
dislocations may be grouped together in glide bands or dispersed through
the crystal. Experimental demonstrations of step formation at disloca-
tions have been discussed elsewhere ® by the present author and by
J. R. Low in Chapter 4 of this volume. If the “risers” (the parts roughly
perpendicular to the flat surface) of cleavage steps are formed by cleavage
on planes that are equivalent to the primary cleavage plane, then the
additional energy 7s that is absorbed because of the steps is simply
v(k — 1), where k is the ratio of the true surface area to the nominal
surface area. Since it is unlikely that # S 2, the energy absorbed with
steps will not be greater than about double the energy absorbed without
steps. If cleavage on some secondary cleavage plane is required to form
the risers, v could exceed y in principle, but since £ will tend to be
less than 2, s will still not exceed ~7y. Thus for crystals in which no
plastic deformation accompanies cleavage, Yo = ¥ + Vs will not be large
compared with 7. The case when plastic flow accompanies cleavage-step
formation will be discussed later.

Anelastic Effects

Anelasticity may have a large influence on cleavage under some cir-
cumstances. For solid solutions of oxygen in Ta,* for example, as much
as 209, of the elastic energy may be ahsorbed anelastically and, hence,
would increase 7y significantly. However, since the maximum anelastic
absorption occurs in a narrow frequency band, it would be effective only
for a narrow range of crack velocities.

Electrical Effects

When crystals that are insulators are cleaved, patches of charge often
form on their cleavage surfaces.? These charge patches subsequently dis-
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sipate their energy by (a) gaseous discharge across the gap of the crack,
(b) surface conduction, or (¢c) field emission of electrons. The amounts

b — —_——
- \\V" e

- % Crack

(b) Cleavage begins.

| Cleavage step

(c) After cleavage.

Fig. 4. Creation of cleavage step by screw dislocations.

of energy that can be dissipated in this way may be quite large, as much
as ten or more times the true surface energy.* When this effect is large,
the electrical discharges result in the release of visible light, and the
phenomenon is known as “triboluminescence.” Mica and zinc sulfide
(sphalerite) are examples of triboluminescent crystals.
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One way in which patches of charge can arise is exhibited by LiF.
Here, charges are associated with the formation of dislocations during
cleavage. Ifa crystal of LiF is cleaved slowly so that groups of dislocations
are formed at the tip of the crack, patches of charge are found to he
associated with the groups of dislocations. This has been demonstrated
by sprinkling fine aluminum oxide particles (~1-u diam) onto the cleav-
age surfaces. The particles tend to collect at the places where dislocations
formed during cleavage. The effect is probably a direct result of the
dislocations and not a result of any interaction hetween the crack and
the dislocations. This is indicated by the fact that insulating powder
tends to collect at dislocations in freshly bent LiF crystals where no crack
is involved. The electrical effects of dislocations in ionic crystals have
been discussed in some detail by Fishbach and Nowick. 2

Plastic Deformation

There are three modes of plastic deformation that may accompany
cleavage. First, there is the possibility of deformation owing to the con-
centrated stresses at the tip of the crack: second, the nominal hending
stresses in the “arms” may cause plastic bending in them; and third,
when parts of a crack lie on different planes, they may join together by
plastically shearing the material that lies between them,

For certain crystals, plastic bending of the “arms” is difficult to avoid
unless the “arms” are very thick. The necessary thickness may be esti-
mated as follows. The maximum tensile stress in a beam that is subjected

to a bending moment A is
6M

wt*

"

Then, since the maximum bending moment is FL during cleavage, and
the resolved shear stress is 7,, = o, sin x cos A = Ko, (where x and A\
are the angles between the direction of tension and the glide plane and
the direction of tension and the glide direction, respectively), the maxi-
mum force that can be applied to a cleavage “arm,” without causing it
to bend plastically, is

wttr,

= %rL

where 1, is the field stress of the crystal. However, in order to cause a
cleavage crack to propagate, a force, F = (1/L) \/6’waI, must be applied
to a crystal (see section on cleavage mechanics). Therefore, if cleavage
is to occur before plastic bending, we have the condition

18R*vE

t > """};’é_“ (1 /)
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Thus, for a crystal like rock salt, where ¥ =~ 200 dynes/cm, £ =5 X 101
dynes/cm?, K =1, and 7,~5 X 10° dynes/cm? it is necessary for
T 3 18 cm in order to avoid plastic bending. Since this is larger than
most laboratory specimens, rock salt is usually bent during cleavage.

The concentrated stresses near the tip of a cleavage crack are localized
to a region that is of the order of ¢ in size (Fig. 2). Therefore, the stress
concentration factor is ~ V. t/b, where b is of the order of atomic di-
mensions.  Since, according to Eq. 15, the maximum tensile stress that
can be supported is Ea/my,, the maximum shear stress is ~G/m; there-
fore, the concentrated stresses near the crack tip (caused by an applied
stress 74 in the direction y perpendicular to the crack) vary as

T TV, Y 2 ym = U(TTa/G) (18)
T = % Y < ¥m

Here y,, is determined by the condition that 7 < G/7.

If plastic flow occurs freely wherever the local stress exceeds the yield
stress 7, of the crystal, then the flow will absorb at least as much energy
as is stored in the elastic field. This energy is

) g
Yo = /5‘5’0’

G [ tra2 [V d <
='§;r~2[ 4Y+7;é—f (-)7) (19)
0 = ym 2

where the upper limit of integration occurs when 7 = 7, that is, at
v¥ = t(r4/71,)%. Integrating, we have

Neglecting the first term, we obtain

1742 1 &
~ L In [——
Ve G Ty

The applied stress is given by Eq. 17 at the beginning of plastic flow, so
we substitute this equation, letting £ =~ 2G, and K ~ %:

Yp =9y In (G/7T),) (20)

Thus we see that the energy absorbed by plastic deformation is propor-
tional to the true surface energy multiplied by a factor that depends on
the yield stress.

Equation 20 is an underestimate for many crystals because the assumed
stress distribution will be considerably altered by small amounts of plastic
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flow. However, this estimate does show that energies that exceed the
true surface energy by at least an order of magnitude can be absorbed
by plastic low at the tip of a cleavage crack. Also, when the amount of
plastic flow is small, this equation is approximately correct.

Since cleavage is a kinetic process, Eqs. 19 and 20 for the plastic energy
absorption should include the strain rate if a detailed analysis is to be
made. Some discussion of this has been given elsewhere.** Many crystals
flow very rapidly at stresses above their yield stresses, however, and an
estimate of v, can be based on their yield stresses. The flow is not limited
by the problem of dislocation nucleation because dislocations can he
nucleated readily by the concentrated stresses at a crack tip.* On the
other hand, since the velocities with which dislocations move are a
function of the applied stress, this must be taken into account. If the
dislocation velocity depends strongly on the applied stress (say, as 7"
where n > 10), then the yield stress is a good criterion of plastic flow
because it does not change much during large variations of the strain rate.

In some crystals, dislocations do not move fast unless very high stresses
are applied to them. This means that Eqs. 19 and 20 do not hold
because a relatively long time is required for the concentrated stresses to
relax, and 7, will depend on the velocity of the crack.

Cirystals that contain crystal boundaries or large numbers of disloca-
tions will tend to absorb much larger amounts of plastic energy than
Eq. 20 predicts. This results from the tearing and complicated stress
distributions that arise when crack propagation is not continuous and
coplanar. Under these adverse conditions, ¥, commonly attains values
as high as 10° ergs/cm?* and under extreme conditions, as much as
10% ergs/cm?.7

Energy Release During Cleavage

By exposing the interior of a crystal, cleavage provides a means for the
release of energy. The freshly exposed surfaces can react readily with
their new environments to form physically or chemisorbed layers on
themselves. Also, various forms of internal stresses can be relieved at
the new surfaces.

Chemical Effects

The shapes of the tips of some two-dimensional cleavage cracks are
shown in Fig. 5.7 These are cracks in an infinite simple-cubic crystal
of lattice constant a. The applied stress is a uniform tension in the z-
direction equal to 19, of the Young's modulus of the material, and the
cracks have various lengths ranging from 10z to 10%a. It may be seen
that the bonds between the atoms are very vulnerable to attack in the
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immediate vicinity of the crack tip where they are stretched almost to
the breaking point. If molecules from the environment attack them at
this vicinity, the energy of the chemical reaction can contribute to the

3a |-

2a ) .

Applied stress = 10~ 2g
| Crack length = 2¢
Lattice spacing = a

3a |-
da |

5a |- S !

6a |-

5a 4a 3a 2a a 0 a 2a 3a 4a 5a
Fig. 5. Atomic displacements near the tips of cracks of various lengths,

propagation of the crack. If the energy of the reaction is vy, per unit
surface area, then Eq. 10 becomes

Thus if 7y is large, the force required to advance the crack may become
very small.  In special cases, the fracture surface cnergy may be increased
by chemical reactions if the reacting molecules “bridge” the crack sur-
faces so as to bind them together.
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Since the atomic bonds near the tip of a crack go through all stages of
being stretched until they are broken, it seems unlikely that the rate of
chemical attack is limited at that point. In order to get to the reactive
sites, the reactive molecules must diffuse within the crack gap by either
gaseous or surface diffusion. There is not much room for gaseous dif-
fusion in small cracks, so surface diffusion probably limits the rate at
which the reactive molecules get to the crack tip and, hence, influences
the rate of crack propagation.

The difference that Obreimov ? found between the cleavage surface
energy of mica in air as compared with its value in vacuum is often cited
as a ‘“‘chemical effect.” It seems likely, however, that this difference
was entirely due to electrical effects. A more convincing demonstration
of chemical effects was made by Berdennikov % for glass. He measured
the stresses required to propagate cracks in glass and found that the
fracture surface energy of soda-lime glass is about 1200 ergs/cm? in
vacuum and is decreased by various liquids (alcohols and water) in inverse
proportion to the logarithm of their dielectric constants. The lowest
value equaled 290 ergs/cm? for the case of water.

In special cases, a foreign chemical species may be contained within
the structure of a crystal. This may increase or decrease the cleavage
surface energy, depending on how tightly the foreign molecules are
bonded to the structure. In one case,®™ it has been observed that dye
molecules that become incorporated in K,SO, during its growth cause
it to cleave readily. If KySOy is grown in the absence of the dye, it does
not cleave at all.

Internal Stresses

When a cleavage crack passes near or through a center of internal
stress such as a dislocation or point defect, some elastic strain energy
can be released. In the case of point defects, only those that lie within
one or two atom distances of the cleavage surface can be affected. The
amount of energy that can be released at each defect must be less than
¥4y, where A, is the cross-sectional area of the defect, Therefore the
concentration of defects must be quite large in order to change v, sig-
nificantly. Clusters of defects in the form of small gas pockets could
have a considerably greater effect.

Dislocations that are intersected by a crack can make rather ap-
preciable contributions to y¢. Thus, if a crack passes along the glide
plane of a dislocation loop, the loop will be annihilated and its energy
released to the crack. If the energy of a dislocation line is H;/cm and
N/em? of them are cut by the crack, their contribution to the cleavage
surface energy will be v, = —NH,. Then, since H; ~ 2 X 10—* ergs/cm,
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if ¥ =200 ergs/cm? the cleavage surface energy will be nullified if
N = 108 dislocations/cm? are cut by the crack.

If a crack intersects edge dislocations perpendicular to their axes, little
elastic energy will be released because only relatively small stresses act
in the direction perpendicular to the surface. However, for a screw
dislocation, the entire elastic field of the dislocation can be relaxed at
the surface. This will liberate about Gb*/4w ergs/dislocation. (See

“ottrell ® for a discussion of the energies of dislocations near free surfaces.)
At the same time, a cleavage step will be created with energy >ybhLL
~ GHL if the step is L cm long. Thus, there will be a net energy release
unless L < 0.1 cm.

Ductility as Cleavage Resistance or Tenacity

The word “ductility”” has been defined by various people in different
ways. To some, it means the amount of plastic strain that a material
sustains before it fractures; to others, it means reduction in area prior
to fracture; to still others, it means impact strength as measured in such
tests as the Charpy or Izod test. The dictionary says that a ductile
material is one that is “capable of being drawn out or hammered thin.”
These various definitions seem to suggest that what is really meant by a
“ductile” material is one that has a high resistance to cracking or cleavage.
To think of materials in this way, that is, in terms of “cleavage re-
sistance,” has the advantage that this quantity can be defined in terms
of distinct physical paramete'rs, whereas the “ductility” of a material
seems to be a very vague concept.

As a measure of cleavage resistance, a dimensionless parameter can he
defined which we shall call the “tenacity parameter” 7. This parameter
is defined through Eq. 17 and is

Tenacity = 1" = — (21)

If T > 1, a material cannot be cleaved and is said to be tenacious (ductile);
on the other hand, if 77 < 1, the material can be cleaved and is said to
be brittle.

The quantities that make up the tenacity parameter require some inter-
pretation.* E, K, and ¢ are simply the elastic modulus, the orientation

* Tenacity is not a material constant but depends on some characteristic length of
the body that is being tested. In the case of a cleavage specimen, the characteristic
length is ¢, but in other cases, it will depend on the particular geometry. For a crack
in an infinite body, it is the crack length, and for other bodies, it may be the length
or thickness, the grain size, or the size of some stress raiser such as a notch. It will
always be the length associated with the size of the region of high elastic strain which
can be relaxed by cleavage.
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factor sin X cos \, and the thicknesses of the cleavage arms, respectively,
but the other quantities are more complex. The yield stress 7, is compli-
cated by the fact that it depends on the loading rate. As yield stress
usually increases with the loading rate, the tenacity parameter shows a
corresponding decrease with increasing loading rate. The most complex
quantity of all is yg. It is the true surface energy vy modified by the
various processes that absorb and release energy at the surface.

It is important to recognize that the surface energy 7y enters into the
tenacity parameter as a factor that may be increased or decreased by
multiplying factors. It is not an additive lerm that may be neglected if
other processes absorb large amounts of energy. Thus, the energy ab-
sorbed by plastic flow, for example, is not large just because a material is
soft. No matter how small the yield stress, some intrinsic surface energy
is needed in order to create stresses that will make the plastic energy
absorption high.

Comparative Tenacities of Materials

It is well known that the ease with which crystals can be cleaved
varies markedly among materials. Materials like mica flake apart
easily, whereas metals, especially gold, are virtually impossible to cleave.
In other words, some materials are very fenacious and others are not.
Some of the reasons for these differences in tenacity will be discussed in
this section in terms of the quantities that make up the tenacity parameter
(Eq. 21).

Although the true surface energy y and the elastic modulus k£ play a
role in determining tenacity, it is apparent from Table 1 that their role
is not a dominant one. For example, copper, germanium, and CaF,
have roughly the same surface energies but quite different degrees of
tenacity. Similarly, LiF and copper have roughly the same elastic
moduli but quite different tenacities.

Some authors tend to use the yield stress of a material, as compared
with its fracture stress, as a measure of tenacity. This cannot be correct,
however, because crystals such as KI and AgCl, for example, yield at
similar stress levels (at the same temperatures relative to their melting
points), and yet they have quite different tenacities. On the other hand,
if one considers the vyield stress of a given material, then yield stress and
tenacity correlate quite well. An example is the case of steel shown in
Fig. 6, where a rapid rise in the square of the yield stress is accompanied
by a rapid decrease in the reduction of area prior to fracture (Eq. 21).

The remaining quantity that can account for variations in tenacity is
the energy dissipated by various processes near the tip of a crack. The
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most important dissipative process by far is plastic deformation, and it
will be discussed in some detail. Since cleavage is a dynamic process, the
rate of energy absorption by plastic flow is the quantity that is of primary
interest, and it depends on the plastic strain rate. In terms of disloca-

tions, the plastic strain rate is: %
de

a =P

where & is the Burgers vector, p is the dislocation density, and o is the
average dislocation velocity. There is not much variation in b from one
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Fig. 6. Relation of reduction of area (tenacity) to yield stress
in a 1020 steel. (Data from Eldin and Collins.5%)

crystal to another, but 7 and p may vary considerably. If either p or »
is very small, then de/dt will be small, and little energy will be absorbed.

Role of Dislocation Density

The average dislocation velocity depends on the applied siress. The
only crystal for which measurements exist is LiF, but the general be-
havior of other crystals can be inferred from the LiF data. Figure 7
shows a set of data for LiF which follow the relation 7 = vy exp (—A4/7)
quite well. Here, vy is a velocity that is nearly cqual to sound velocity,
and 7 is the applied shear stress. Two additional curves are shown for
hypothetical crystals. For covalent crystals, it is expected that the ve-
locity may be zero until a rather high stress level is reached; then the
velocity will increase slowly with increasing stress up to sound velocity.
On the other hand, for a metal crystal, the dislocation velocity may he
large even for small applied stresses, but again, it never exceeds the
velocity of sound in the crystal.
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In the case of covalent crystals (either hypothetical or real, such as
silicon and germanium), the energy absorbed by plastic flow is small at
low temperatures because dislocations do not move in these materials
except at high stress levels. Therefore, near a crack tip, the region in
which de/dt is appreciable is very small. Thus, one factor that can cause
low tenacity in a crystal is low dislocation mobility. This is not the only
important factor, though, because even if the dislocations in a crystal
are mobile, if not many of them are present, the plastic strain rate will
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Fig. 7. Screw dislocation velocities versus stress in crystals

be small. Three factors might limit the dislocation density in a material:
(1) low nucleation rate, (2) low multiplication rate, and (3) high rate
of strain hardening (leaves small effective dislocation density). The first
of these factors is not believed to be important because dislocations can
be nucleated easily near the tips of cracks.** Also, the rate of multiplica-
tion seems adequate in most crystals.® However, there do appear to be
systematic differences in the dislocation densities of strained crystals, so
these must be attributed to strain-hardening effects.

Table 2 compares strain-hardening rates of typical crystals and the
dislocation densities in them after some strain (509 eclongation). Al-
though the hardening rates of the materials do not show a systematic
behavior, it may be seen that the dislocation density is very large for
metals, considerably smaller for ionic crystals, and still smaller for
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germanium. The reason for this variation is not clear at the present time,
but it could play an important role in the fracture behavior of the
crystals. We see that the variation in dislocation density is such that it
acts to reinforce the variation of dislocation mobilities shown in Fig. 6
and to produce high strain rates in metals at a given stress level and low
train rates in ionic and covalent crystals at the same stress level.

TABLE 2. Comparison of Strain-Hardening Rates and Dislocation
Densities of Various Crystals #51-%

Crystal Strain-Hardening Rate Dislocation Density at
dr/dvy 509, Strain
(kg/mm?) (dislocations/cm?)

Cu 12-24 - 1on

Ag 7-15 —

LiF 14.0 5 % 108

KCl 5.6 -

Ge > 100 ~ 108

Effect of Crystal Structure on Crack Propagation

Figure 8 shows a schematic rock-salt-type crystal. A (100) surface is
shown with a crack on the (001) plane along the line 48 in Fig. 8a.
To relieve the elastic strains near point B, the crack might advance
along its own plane, or alternatively, some plastic flow might occur as
in Fig. 86. The smallest unit of plastic flow that can occur is one unit
Burgers vector, and, when this occurs, the ions on opposite sides of the
crack are brought into repulsive positions. Therefore, at the same time
that some elastic energy is relieved by the unit of plastic flow, the electro-
static energy of the crystal increases. This electrostatic energy causes an
effective back stress on the motion of the dislocation. The back stress
can be estimated in the following way.

The configuration at C in Fig. 86 may be seen to be almost that of an
ion vacancy, except that one of the nearest-neighbor sites is unfilled
and there is some energy attributable to the unbalanced repulsive forces.
The same situation exists at the next layer parallel to the plane of the
paper, except that the ions are reversed in sign. Thus one has approxi-
mately a row of ion vacancy pairs. Now Mott and Littleton ** have
shown that the binding energy of an ion vacancy pair is approximately
8Gb? per ion, where G = shear modulus and b = Burgers vector. There-
fore, we take this to be the energy per ion length of our pseudovacancy
row. If a second unit of glide occurs, the configuration of ions becomes
attractive again, so the energy owing to the gliding starts at zero, rises
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to a maximum when the displacement x = 6, and drops to zero again
when x =2h. We approximate the variation by a sine function:
E = E,, sin (wx/2b), where E,, = §Gb*. For small x, the sine can be
replaced by its argument, and 7 =~ 3, so we have E >~ 3Gb% (x < b).
Thus, the force that resists the gliding is =~ 2G#%? per ion. The force on a
dislocation line owing to an applied stress 7 is Th® per atom, so unless
T ~ 26, a dislocation cannot move away from a crack in the rock-salt
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Fig. 8. Effect of plastic flow at the tip of a
crack in the rock-salt structure.

structure. The stresses are very large near a crack tip, of course, but
they do not get as large as 2G.

It is believed that the afore-mentioned effect may account for the low
tenacities of ionic crystals as compared with metallic crystals. One piece
of evidence that seems to support this idea is that, when dislocation loops
are nucleated at the tips of cracks in LiF crystals,* the types of loops that
would cause the electrostatic faulting effect do not appear. Imagine a
crack that lies on the (100) plane with its edge along the [010] direction.
It will be observed that loops with <011 > Burgers vectors are nucleated,
but those with <101 > Burgers vectors are not.  The latter produce fault-
ing, whereas the former do not.

The fact that the silver halides have high tenacities is also consistent
with this idea because a large fraction of their binding is due to the van
der Waals forces between their highly polarizable ions. Therefore, it is
expected that clectrostatic faults would not have a strong effect in them.
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Furthermore, this phenomenon may account for the Joffe effect. If a
faulted crack were filled with water, the energy of the fault would he
greatly reduced because of the high dielectric constant of water. This
would make it much more difficult to nucleate and propagate cracks in
wet ionic crystals because plastic flow would stop the cracks from
growing.

Summary

This paper discusses the cleavage of crystals from the point of view of
principles. First, the practical art is considered, and a set of rules is given
for obtaining good cleavages. Then the energy-balance method is used
to develop a mechanics of cleavage. An equation of motion for cleavage
cracks is derived which concisely expresses the kinetics of cleavage crack
propagation. The stress distributions around cleavage cracks are de-
scribed on the basis of a photoelastic study.

Relations that can be used in experiments to measure cleavage surface
energies are also derived. Next, a simple theory that can be used to
estimate the anisotropic surface energies of crystals is presented, and it is
used to predict the cleavage planes of crystals.

Measurements of crack velocities are discussed, and it is pointed out
that measurements of terminal crack velocities agree with theory.

Extended discussion is given of the processes that absorb and release
energy during cleavage. Energy is absorbed by the formation of cleavage
steps, by electrical discharges, by anelastic effects, and by plastic deforma-
tion. For the latter case, a relation is derived which shows that the energy
absorbed by plasticity is equal to the true surface energy multiplied by a
simple factor that contains the yield stress. Energy is released by chemical
effects and by intersections of cracks with centers of internal stress such
as dislocations or point defects.

Ductility is discussed in terms of resistance to cleavage. A parameter,
called the tenacity, is defined. It is a measure of cleavage resistance. The
tenacities of various materials are compared, and it is pointed out that
dislocation motion is the most important factor in determining the
tenacity of a crystal. Materials with low dislocation mobilities show low
tenacities. Also, materials appear to differ as to their dislocation densities
after a given plastic strain, and this can affect their tenacity.

Finally, it is pointed out that electrostatic faults may be produced in
lonic crystals when plastic flow occurs at the tips of cracks in them. These
faults tend to suppress plastic flow and, hence, may have a large influence
on the fracture of ionic crystals.

CLEAVAGE, DUCTILITY, AND TENACITY IN CRYSTALS 221

ACKNOWLEDGMENTS

Dr. W. Harrison suggested the method for finding the equation of
motion of a crack. Drs. J. R. Low and W. G. Johnston contributed
helpful criticisms.

REFERENCES

1. A, A, Griffith, Proceedings of First International Congress of Applied Mechanics, Delft,
1924, C. B. Biezeno and J. M. Burgers, Eds., J. Waltman, Jr., Delft, p- 55 (1925),
. J. W. Obreimov, Proc. Roy. Soc. (London), A, 127, 290 (1930).
J. J. Benbow and F. C. Roesler, Proc. Phys. Soc. (London), 70, 201 (1957),
- E. Orowan, Welding J., 34, 157s (1955).
N. F. Mott, Engineering, 165, 16 (1948).
R. Guernsey and J. J. Gilman, to be published.
5. R. Irwin, “Fracture,” Handbuch der Physik, vol. 6, Springer-Verlag, Berlin,
p. 551 (1958).
8. N. Wooster, Sci. Progr., 26, 462 (1932).
9. M. L. Huggins, dm. J. 8., 5, 303 (1923).
10. M. D. Shappell, Amer. Mineralogist, 21, 74 (1936).
11. A. V. Stepanov, J. Tech. Phys. (U. 8. S. R.), 19, 492 (1949).
12. C. G. Dunn, private communication.
13. I. N. Stranski and R. Suhrmann, Ann. Physik, 1, 153 (1947).
14. C. S. Barrett and R. Bakish, Trans. AIME, 212, 122 (1958).
15. B. W. Roberts and H. C. Rogers, Trans. AIME, 206, 1213 (1956).
16. R. Shuttleworth, Proc. Phys. Soc. (London), A, 62, 167 (1949).
17. B. E. Dent, Phil. Mag., 8, 530 (1929).
18. M. E. van der Hoff and G. C. Benson, J. Chem. Phys., 22, 475 (1954).
19. F. van Zeggeren and G. C. Benson, J. Chem. Phys., 26, 1077 (1957).
20. S. G. Lipsett, F. M. G. Johnston, and O. Mass, J. Am. Chem. Soc., 49, 1940 (1927).
21. E. Hutchinson and K. E. Manchester, Rev. Sci. Instr., 26, 364 (1955).
22. G. C. Benson, H. P. Schreiber, and F. van Zeggeren, Can. J. Chem., 34, 1653
(1956).
23. Y. D. Kuznetsov, Surface Energy of Solids, trans. from the Russian, H. M. Stationery
Office, London (1957).
24. R. Shuttleworth, Proc. Phys. Soc. (London), A, 62, 167 (1949),
25. W. P. Berdennikov, Physik. 7. Sowjetunion, 4, 397 (1933).
26. B. F. Ormont, Doklady Akad. Nauk. S. S. S R., 106, 687 (1956).
27. W. D. Harkins, J. Chem. Phys., 10, 268 (1942).
28. S. Ramaseshan, Proc. Indian Acad. Sei., A, 24, 114 (1946).
29. J. W. Taylor, Metallurgia, 50, 161 (1954).
30. A. Kochendérfer, Naturwiss., 41, 36 (1954).
31. H. B. Huntington, Phys. Rev., 81, 1035 (1951).
32. R. Stratton, Phil. Mag., 44, 1236 (1953).
33. A. B. Scott, Phil. Mag., 45, 1173 (1954).
34. H. Udin, A. J. Shaler, and J. Wulff, J. Metals, 1, 186 (1949).
35. G. C. Kuczynski, .J. Appl. Phys., 24, 1250 (1953).
36. J. J. Gilman, C. Knudsen, and W. P. Walsh, J. Appl. Phys., 29, 601 (1958).

Nows v



222 JOHN J. GILMAN

37. D. K. Roberts and A. A. Wells, Engineering, 178, 820 (1957).

38. A. N. Stroh, Advances in Physics, 6, 418 (1957).

39. J. J. Gilman, Trans. AIME, 212, 310 (1958).

40. R. W. Powers and M. V. Doyle, “The Association of Oxygen Atoms in Interstitial
Solid Solutions in Tantalum,” to be published in 7rans. AIME.

41. B. Deryaguin, Leningrad Conference on Mechanical Properties (1958).

42. D. B. Fishbach and A. S. Nowick, J. Phys. Chem. Solids, 5, 302 (1958).

43. J. J. Gilman, J. Appl. Phys., 27, 1262 (1956).

44. J. J. Gilman, Trans. AIME, 209, 449 (1957).

45. W. G. Johnston and J. J. Gilman, J. Appl. Phys., 30, 129 (1959).

46. J. R. Low, Jr., The Relation of Properties to Microstructure, Amer, Soc. Metals, Cleve-
land, p. 163 (1954).

47. H. A. Elliott, Proc. Phys. Soc. (London), B, 59, 208 (1947).

48. H. E. Buckley, Z. Krist., 88, 122 (1934),

49. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford,
p. 36 (1953).

50. A. S. Eldin and S. C. Collins, J. Appl. Phys., 22, 1296 (1951).

51. F. D. Rosi, Trans. AIME, 200, 1009 (1959).

52. J. R. Patel and B. H. Alexander, Acta Met., 4, 385 (1956).

53. P. Gay, P. B. Hirsch, and A. Kelly, dcta Met., 1, 314 (1953).

54. N. F. Mott and M. J. Littleton, 7Trans. Faraday Soc., 34, 485 (1938).

DISCUSSION

E. F. PoNceLET, Stanford Research Institute. The method given in this
chapter for finding the equation of motion of a crack is not accurate
enough to lead to useful results. It may be of interest to recall that there
exist two solutions of the problem that give results that check with ex-
perimental data.

The first solution was obtained by Craggs,! in which, using the Griflith
approach, the decrease in strain energy induced by the propagation of a
crack is equated to both the new surface energies and the elastic wave
propagations generated. In this manner and by using very rigorous
mathematical methods, Craggs arrived at a limiting crack velocity equal
to the Rayleigh wave velocities. This is a little high, because of the
simplifications required to solve the equations.

The second solution was obtained by the writer, using a statistical
rather than a thermodynamical model and relating the rate at which
bonds at the crack tip broke with the stress at the crack tip itself. This
treatment ? yields values for static fatigue that are in agreement with ex-
periments. It gives for the limiting crack velocity the correct value of
one-half the transverse wave velocity.?
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J. C. Surrs, Harvard University. The following treatment re-derives
some of Gilman’s equations in his section, ‘““The Mechanics of Cleavage,”
with slightly different results, and it solves the equation of motion for
crack propagation. The point of departure is Eq. 7, which is correct but
which contains the additional feature that H = constant = 0. That H
is constant arises essentially from the fact that this is a conservative
system with the kinetic energy a homogeneous quadratic in the velocities,
and therefore, the total energy is conserved. The constant may be
evaluated at L equals zero, where S, 7', and U are all zero, giving H = 0.
Therefore we have

AL — BL? + Co2Lb = 0 (D.1)
Solving Eq. D.1 for . gives
= | 5 tw, \/Ij’_@
2Ve6 L U
where 2t; = specimen thickness. Therefore the condition for the initia-

tion of crack motion is § = U, and the corresponding critical crack
length is L** = A/B. Therefore

*\ 2
e 1 5!;09\/1_<[_) (D.2)

Equation D.2 is an equation of the motion. However, one may derive
an expression similar to Gilman’s equation of motion by differentiating
Eq. D.1 with respect to time, obtaining

2Ca, L3+ 5Cv 2L+ 4 — 3BL* = 0

Or, rewriting in terms of the critical crack length,

51}r 1‘5[120g 1 (L% )
ST ATy £ [l 5(‘2“)] (D3]

Now, from Eq. D.3, when L = L* and », = 0, then,

Sh“v o

Ve (D.4)

a. =
or, in other words, the crack has an initial acceleration. This is not
unreasonable. First, one cannot discuss the case of L < L* since, by
Eq. D.2, this gives an imaginary velocity. We must start, therefore,
with a crack of length L* with zero initial velocity, apply a force F, and
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then calculate the resulting motion. At = 0, we must have an initial
acceleration that corresponds to this applied force F; this initial accelera-
tion is given by Eq. D.4. Now a, = v.dv./dL (¢t = dme), and therefore,
a. equals zero when dv./dL equals zero (for 2, ¢ 0). From Eq. D.2,
then, @, = 0 when L = V2 L* One may see the general character of
the motion from Eq. D.2, which gives a curve of the form shown in
Fig. D.1.
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Fig. D.1. Form of Eq. D.2. Fig. D.2. Form of Eq. D.5.

One may derive an explicit solution to Eq. D.2 or D.3 as follows:
For a = L/L* (L** = A/B), then Eq. D.2 may be written as

%‘; = é V1 —=a? where k= é \/g Iﬁi_‘;
therefore
ada
kdt = W
and
ada a .
kt = VBT Var =1+ 4log (a+ VaZ=1) (D.5)

Equation D.5 explicitly gives the relation between crack length and time
in generic form. All parameters affect the motion through the two gen-
eral parameters £ and L* Equation D.5 is shown graphically in
Fig. D.2. For L > ~ 3L* the solution is parabolic, or

L(t) = (0.96V 1) Vi
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