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ABSTRACT 

 
Rate-sensitive and triaxiality-dependent cohesive elements are used to simulate crack growth under dynamic loading 
conditions. To consider the effect of stress triaxiality and strain rate on the cohesive properties, a single plane strain element 
obeying the constitutive equations of a rate-dependent Gurson type model has been used. The single element is loaded under 
various stress biaxiality ratios and strain rates and the obtained stress-displacement curves are considered as traction 
separation law for the cohesive elements. These curves are used for analyzing a middle-cracked tension M(T) specimen made 
of aluminum alloy 6XXX series. The effects of constraint and strain rate on the energy absorption of the specimen and crack 
growth are discussed. 
 

Introduction 
 

Local approaches have wide application in numerical simulation of crack growth. Two local approaches, named complete 
Gurson model [1] and cohesive zone model [2] have been employed in the present article. 
Cohesive elements used in simulating ductile fracture are supposed to represent the mechanism of nucleation, growth and 
coalescence of microscopic voids that initiate at the inclusions and second phase particles. The idea of the present 
contribution is to obtain the cohesive properties by studying the mechanical response of a single element obeying a rate-
dependent Gurson type constitutive equation. This sort of mechanism-based cohesive model has also been proposed by other 
authors, e.g. [3,4]. It is well known that the cohesive strength increases with strain rate ([5-7]) and this implies an increase in 
stress triaxiality [8,9]. Using a Gurson type model provides a mean for exploring the effect of stress triaxiality on the cohesive 
parameters [3]. Rate sensitivity of the cohesive zone is determined by applying different values of loading speed on the rate-
sensitive single element and calculating the traction separation law (TSL) parameters from the mechanical response. A similar 
procedure is performed by applying different stress ratios on the single element to study the effect of stress trixiality on the 
cohesive parameters. The shape of the TSL, cohesive strength and critical displacement are fitted to meet the results of the 
single element calculations for various strain rates and triaxialities. The parameters are then used for crack growth simulations 
of an aluminum middle-cracked tension M(T) specimen. The mechanical response of the structure is shown by the load-
displacement diagrams and the results are discussed. The influence of dynamic loading on plastic energy dissipation and 
crack growth is illustrated, too. 
To simulate the mechanical response of a structure subjected to high rate of loading, phenomena like stress waves, inertia, 
rate sensitivity of material and adiabatic heating need to be considered.  In the presented simulations, the cohesive elements 
are triaxiality- and rate-dependent simultaneously. Since the values of strain rate and stress triaxiality are not available in the 
cohesive elements, they are calculated and transferred from the solid elements adjacent to them during transient dynamic 
analyses. While rate dependency and constraint are considered for the cohesive elements, the influence of inertia and elastic 
waves on bulk material is inherent in the transient dynamic analyses. The influence of adiabatic heating has not been 
considered in the analyses. 
The analyses are performed in ABAQUS/Standard nonlinear finite element code [10]. The rate-dependent complete Gurson 
model developed and implemented into ABAQUS as a user defined material (UMAT) subroutine [11] is used for the single 
element calculations. The cohesive element calculations are performed by a user defined element (UEL) subroutine developed 
by Scheider [12] and expanded by the present authors for rate and triaxiality-dependent cohesive elements to be used in 
transient dynamic analysis. 
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Calculations 
 

The following equation [13] was employed to calculate rate dependency of the bulk material: 
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where σ , ε ,  0σ  and  0ε  stand for true stress, true plastic strain, yield stress, and a reference strain respectively. ε&  and 

0ε&  are the strain rate and a reference strain rate, respectively. N is known as strain hardening and m as strain rate 

hardening exponent. In this formulation, the strength of the material increases with the increase of strain rate. The constitutive 
behavior is based on von Mises plasticity with pure isotropic hardening. Viscous, i.e. time dependent effects are not 
considered. The values considered for aluminum 6XXX series are: 0σ =217 MPa, 0ε =0.002, 0ε& =150 1/s, N =0.0526, 

m =0.05. Mass density of aluminum, ρ =2700 Kg/m3 has been considered in all of the calculations. 
The unit cell considered in the present study is a four node plane strain element obeying rate-dependent complete Gurson 
model as the constitutive equation. Rate sensitive bulk material is described by Equation (1). Details on formulation and 
implementation of rate-dependent Gurson type models are found elsewhere [14,15]. The initial void volume fraction of 0f = 

0.002 is considered in the calculations as suggested in [16], since no experimental data on micromechanical information is 
available for this parameter. The analyses are performed for an element with the initial size of DxD=1 mm2, for different stress 
biaxialities β , as shown in Figure 1: 
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where  11σ  and 22σ  are the stresses in x and y  directions, respectively. If the material is incompressible, the stress triaxiality 
which is the ratio between mean normal stress and von-Mises equivalent stress is given by [3]:  
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Figure 1. The effect of stress triaxiality on the traction separation behavior of a unit cell 
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Figure 2. The effect of stress triaxiality on the traction separation behavior of a rate dependent unit cell subjected to strain rate 

of 500 1/s 
 

In order to investigate the effect of strain rate on stress-elongation behavior, quasi-static analyses were performed with a rate-
dependent model and high speed loading. Figure 2 shows the normalized traction separation behavior for different triaxialities 
for a loading rate of 500 mm/s or in other words, an initial strain rate of 500 1/s for an element of initial length D=1 mm. To 
check the effect of strain rate while triaxiality does not change, various loading speeds were applied for the same triaxiality of 
1.5 ( β =0.44). Figure 3 shows that the curves are almost parallel and only the value of strength changes for the same 
maximum displacement. Figure 4 shows the curves fitted to the calculated values of strength and energy for the rate-
dependent case at constant loading rate (V=500 mm/s) and different triaxiality values. Figure 5 shows how the values of 
cohesive strength and cohesive energy change with loading rate for a constant triaxiality of 1.5. As it is shown, the value of the 
maximum traction changes as a function of the rate independent case for the same triaxiality multiplied by the relative strain 
rate to the power of m (strain rate hardening exponent). 
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Figure 3. Traction separation behavior st different load speeds (strain rates) and constant stress triaxiality (H=1.5) 

 
The traction separation law introduced by Scheider and Brocks [17] has been used to reproduce the calculated damage and 
failure of the unit cell by a cohesive element. This TSL has the following form:  



y = 1.497x-1.3666

y = 1.1571 ln(x) + 2.1962
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Figure 4. Variation of normalized cohesive strength and energy vs. stress triaxiality in constant load speed of 500 mm/s  
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where T and δ  are the traction and opening of the cohesive element, respectively. S  is the maximum traction (cohesive 

strength) and 0δ   is the maximum opening (critical separation).  1δ  and 2δ  are shape parameters. In this formulation, critical 

opening is:  
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where  0Γ  is the energy absorbed by cohesive elements, known as cohesive energy.  
Using the mathematical expressions shown in Figures 7 and 8, the following approximations are obtained for the cohesive 
strength and energy:  
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where H is the stress triaxiality and D  is the characteristic length scale of the Gurson model, which is usually based on the 
micromechanical structure of the material. A value of D =0.1 mm is chosen in accordance to [18] who also investigated an 
aluminum alloy of 6XXX series. Considering e.g. Figure 2, it is recognized that the piecewise TSL defined by Equation (4) fits 
properly to the curves if the shape parameters  1δ  and 2δ  are adjusted accordingly. Combining Equations (5), (6) and (7), the 
critical separation reads:  
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Figure 5. Variation of normalized cohesive strength and energy vs. load speed for constant triaxiality of 1.5  

 
The comparison between the stress elongation behavior obtained from rate-dependent Gurson model calculations and the 

TSL approximation of Equation (4) with the cohesive parameters 
0

1

δ
δ

=0.07 and 
0

2

δ
δ

=0.35 are shown in Figure 6 for two 

different triaxiality values. Since the curves obtained from the single element calculations and those based on Equation (4) are 
not exactly the same, the critical displacements are a slightly different for the same cohesive strength and energy, but the 
differences are reasonable.  
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Figure 6. Comparison between traction separation behavior obtained from Gurson type model and the TSL proposed in 

Equation (4) 
 
 

Crack growth simulations and results 
 

An M(T) specimen of unit thickness and dimensions of 100×100 mm2 has been modeled using four node plane strain 
elements. The ratio of the initial crack length to the specimen’s width is a/W = 0.5. One row of cohesive elements with initial 
zero height has been used at the ligament. Because of symmetry, one fourth of the specimen has been modeled. Figure 7 
shows the specimen and the detailed mesh at the crack tip and a part of the ligament. The smallest continuum element size 
belongs to the elements adjacent to the ligament and it is 0.1×0.1 mm2. The surrounding continuum elements behave 
according to Equation (1) and the cohesive elements based on Equations (4), (6), (7) and (8). Each cohesive element 
possesses four nodes and two integration points. For each cohesive element, the actual values of nodal displacement, 
triaxiality and strain rate are used to compute the current value of traction and element stiffness. The values of triaxiality and 
strain rate are calculated in the continuum elements along the ligament at all of the integration points using UVARM subroutine 
in ABAQUS. The averages of these values are then calculated after the load increment and provided to the respective 



adjacent cohesive elements in the next increment as shown in Figure 8. The error of this kind of explicit scheme is accepted 
since the time increments are always chosen to be small enough. 
 

 
Figure 7. M(T) specimen and the detailed finite element model of the crack tip area  

 

 
Figure 8. Triaxiality and strain rate values are transferred to the cohesive elements from the adjacent continuum elements 

 
Material separation process involving void growth and plastic deformation at microlevel are irreversible by nature. This 
property has been implemented in the cohesive element formulation so that a separation already happened to an element 
remains after local unloading and relaxing the stress [12].  
The analyses are aimed to evaluate the influence of constraint, rate sensitivity, inertia and elastic waves on the energy 
absorbed by the specimen. In the analyses, the effects of inertia and elastic waves are investigated as well as the influence of 
stress triaxiality and rate sensitivity. It should be reminded that in the calculation of the energy of separation, only the effect of 
sensitivity and constraint have been considered. The load is applied as a prescribed displacement at the upper edge of the 
specimen with the speed of 3.3 m/s. The load and displacements presented in the following diagrams are the values 
calculated on the boundary of the model. Figure 9 shows the load-displacement curves obtained from the analyses. The  
existence of the oscillations is inevitable due to the existence of elastic waves. The time that elastic waves travel the length of 
the specimen is around 20 µs; that is much shorter than the total time of fracture (the shortest time of fracture is 131.8 µs, 
which is for the case of rate dependent bulk material). The elastic waves can have two sources, one is the dynamically applied 
load and the other is the wave induced by broken cohesive elements or, in other words, the waves induced because of the 
relatively high speed of the crack growth. Because of the implicit integration used in the dynamic analyses, there is no severe 
limitation on the time increment chosen.  
Dynamic simulation considering the rate dependency only for bulk material leads to the most conservative assumption. 
Ignoring the effect of strain rate and triaxiality on the behavior of interface elements makes the results unrealistic. Using rate- 
and triaxiality-dependent cohesive elements results in more energy absorption, although it is less than the simulation which 
ignores all of these influences. Figure 10 shows the crack growth vs. time for dynamic simulations. In all of the cases, the 
crack speed is low in the beginning and then it increases to a somewhat steady state speed. The case with no rate 
dependency is an exception in which it seems that the crack speed is changing during the growth. The figure shows clearly 
that the steady state speed of the crack growth is highest, about 1430 m/s, for the case in which only bulk material is rate  
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Figure 9. The effect of strain rate and constraint on the load-displacement behavior 

 
dependent, the crack growth initiation happens almost at the same time as for the case with no rate dependency. This is in 
contrast to the investigations of Basu [19] who numerically showed that strain rate sensitivity plays a beneficial role on dynamic 
ductile fracture initiation. This contradiction is related to ignoring triaxiality change even at the first stages of deformation. It is 
observed in Figure 10 that when triaxiality dependency is considered, crack growth initiation happens at 69 µs which is higher 
than the rate-insensitive case. To check if this effect is due to the rate sensitivity of the material, a dynamic case was simulated 
with triaxiality dependent cohesive elements while no rate sensitivity was considered. The analysis showed that the crack 
growth initiation happened at 61.8 µs. This proves that rate sensitivity has postponed crack growth initiation, although after a 
short time, crack growth speed is higher than the rate-insensitive case. It should also be noted that in the case where stress 
triaxiality change has been ignored, the crack growth velocity becomes so high that the assumption of ductile mechanism of 
crack growth might be inaccurate. It is worth noting that for the case in which only rate dependency of bulk material has been 
considered, the crack speed is around 1400 m/s. In this case, the inertia effect on fracture energy is important, but it has been 
ignored in the calculation. Regarding these discussions and back to Figure 9, it is well understood why the load in the triaxiality 
and rate dependent case is higher in the beginning and drops very fast after some time. The reason why crack speed is much 
higher in the case of rate-dependent plasticity is that the material hardens due to high loading rate and opens the crack 
(cohesive elements) more easily.  
When the cohesive zone is rate dependent, the cohesive strength is increased at high loading rates and this causes more 
energy dissipated by plasticity in the surrounding material. Although the stresses needed for crack propagation are higher 
compared to the case with rate independent cohesive parameters, the cohesive strength, S , is not high enough to decrease 
the crack growth rate as much as for the rate insensitive case. The reason is that with increasing plasticity, the crack opening 
speed decreases, so the local strain rate and consequently the cohesive strength decrease again. Besides, stress triaxiality  
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Figure 10. The effect of strain rate and constraint on the load-displacement behavior 

 



increases initially, but because of inertia it decreases while the crack is growing [20]. This means that the decrease of the 
cohesive strength is related to the inertia. Figure 11 shows the change of triaxiality value during crack growth for the case in 
which rate dependency and triaxiality have been considered for the cohesive elements. 
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Figure 11. The change of stress triaxiality during crack growth under dynamic loading conditions 

 
Conclusions 

 
The effects of triaxiality and strain rate on cohesive properties have been considered simultaneously in a finite element 
dynamic crack growth simulation. The results show that in dynamic conditions, the value of stress triaxiality increases initially 
whereas inertia leads to its decrease during the crack growth. It is shown that considering strain rate in the dynamic 
simulations while ignoring the stress triaxiality leads to a high underestimation of the toughness. The analyses also show that  
although strain rate sensitivity makes a ductile crack initiation to be postponed, it leads to a faster crack growth due to a  
decrease in the amount of plasticity at the crack tip area. In other words, although the energy absorption increases initially, it 
drops very fast after a short crack growth. This is in contrast with a dynamically loaded uncracked specimen, where positive 
strain rate sensitivity always makes the specimen absorb more energy.  
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